
Chapitre 11

Thermodynamique des processus

irréversibles

11.1 Equation de diffusion de la chaleur

Montrer que le profil de température (11.44),

T (x, t) =
C√
t
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(
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)
où T est la température et x la coordonnée spatiale, est une solution de l’équa-
tion de diffusion de la chaleur (11.37).

11.1 Solution

Pour montrer que le profil de température T (x, t) est une solution de l’équation
de diffusion de la chaleur (11.37), on doit calculer les dérivées partielles de cette
fonction. La dérivée partielle de la température T par rapport au temps t est
donnée par,
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La dérivée partielle première de la température T par rapport à la position x
s’écrit,
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ce qui implique que le produit de λ et de la dérivée partielle seconde de la
température T par rapport à la position x est donnée par,
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Ainsi, on trouve que les expressions pour ∂T/∂t et λ∂2T/∂x2 sont identiques,
ce qui établit que le profil de température T (x, t) est une solution de l’équation
de diffusion de la chaleur (11.37).

11.2 Déphasage thermique

Un long fil de cuivre de diffusivité thermique λ est chauffé à une extrémité par
une flamme passant périodiquement l’extrémité du fil alors que l’autre extré-
mité est située si loin de la flamme qu’elle reste à température ambiante T0. On
considère le fil comme un système unidimensionnel avec une variation pério-
dique de température d’amplitude ∆T en x = 0. La température à l’extrémité
chaude s’écrit,

T (0, t) = T0 + ∆T cos (ωt)

où x est la coordonnée spatiale le long du fil. Dès que le fil a atteint un régime
où chaque point du fil a une variation périodique de température, montrer que
le profile de température est donné par,

T (x, t) = T0 + ∆T exp
(
− x

d

)
cos
(
ω t− x

d

)
où d =

√
2λ

ω

L’oscillation de la température en position x est déphasée d’un angle −x/d par
rapport à l’oscillation en position x = 0. L’amplitude d’oscillation est atténue
d’un facteur exp (−x/d). Cet exercice est analogue à l’isolation thermique d’un
bâtiment soumis à une puisssance thermique périodique (sect. 3.10).

11.2 Solution

Pour montrer que le profil de température T (x, t) est une solution de l’équation
de diffusion de la chaleur (11.37), on doit calculer les dérivées partielles de cette
fonction. La dérivée partielle de la température T par rapport au temps t est
donnée par,
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La dérivée partielle première de la température T par rapport à la position x
s’écrit,
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ce qui implique que le produit de λ et de la dérivée partielle seconde de la
température T par rapport à la position x est donnée par,
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Ainsi, on trouve que les expressions pour ∂T/∂t et λ∂2T/∂x2 sont identiques,
ce qui établit que le profil de température T (x, t) est une solution de l’équation
de diffusion de la chaleur (11.37).

11.3 Equation de la chaleur avec une source de chaleur

L’équation de diffusion de la chaleur a été établie en sect. 11.4.2, en absence de
terme de source. Montrer que pour un conducteur électrique en présence d’une
densité de courant électrique conductif jq = qe je, l’équation de la chaleur
devient,

∂t T = λ∇2 T − τ

c
jq ·∇T +

j2q
σ c

où λ est la diffusivité thermique, σ est la conductivité électrique, τ est le co-
efficient de Thomson du conducteur électrique et c est la densité de chaleur
spécifique des électrons de conduction.

11.3 Solution

Dans le référentiel du conducteur électrique, i.e. v = 0, et en absence de
contrainte mécanique exercée sur le métal, i.e. πu = 0, l’équation de continuité
pour l’énergie interne (10.43) se réduit à,

∂t u+ ∇ · ju = 0

D’après la relation (11.33),
∂t u = c ∂t T

Compte tenu de la relation (11.102) et de la définition (11.104) du coefficient
Thomson, la relation (11.100) devient,

∇ · ju = −κ∇2 T + τ jq ·∇T −
j2q
σ

(11.1)
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Ainsi, on obtient l’équation de la chaleur,

∂t T = λ∇2 T − τ

c
jq ·∇T +

j2q
σ c

Elle contient un terme de source de chaleur, constitué d’un effet Thomson et
d’un effet Joule.

11.4 Effet Joule dans un fil

Etablir le profil de température d’un fil de longueur L et de rayon r parcouru par
un courant électrique I, de la gauche vers la droite, qui provoque l’échauffement
du fil. Le fil a une conductivité électrique σ et une conductivité thermique κ.
La chaleur se propage le long du fil jusqu’à son extrémité sans qu’il ait de
dissipation par sa surface latérale. L’effet Thomson est négligeable par rapport
à l’effet Joule. Les extrémités gauche et droite sont maintenues à la température
constante T0. Déterminer le profil de température T (x) le long du fil lorsqu’il
a atteint un état stationnaire.

11.4 Solution

Dans le référentiel du fil, i.e. v = 0, en absence de contrainte mécanique exercée
sur le métal, i.e. πu = 0, et dans un état stationnaire, i.e. u̇ = 0, l’équation de
continuité de l’énergie interne (10.43) impose la condition,

∇ · ju = 0

En négligeant l’effet Thomson, i.e. ∇ ε = 0, la relation (11.100) se réduit à,

κ∇2 T = −
j2q
σ

où

∇2 T = ∂2x T x̂ et jq =
I

π r2
x̂

Ainsi,

∂2x T = − I2

π2 r4 κσ

La primitive de cette équation par rapport à x est,

∂x T = − I2

π2 r4 κσ
x+A

où A est une constante. La primitive de cette deuxième équation par rapport
à x est alors,

T (x) = − 1

2

I2

π2 r4 κσ
x2 +Ax+B
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où B est une constante. Les constantes sont déterminées par les conditions aux
bord sur la température,

T (0) = T (L) = T0

ce qui implique que,

A =
1

2

I2 L

π2 r4 κσ
et B = T0

Ainsi,

T (x) =
1

2

I2

π2 r4 κσ
x (L− x) + T0

A l’aide de la définition de la résistance électrique R (L) d’un fil de résistivité
ρ = 1/σ, de longueur L et de section d’aire A = π r2,

R = ρ
L

A
=

1

σ

L

π r2

le profil de température est donné par,

T (x) =
RI2

κLA

1

2
x (L− x) + T0

Il est maximal pour x = L/2 au milieu du fil.

11.5 Effet Thomson dans un fil

Etablir le profil de température d’un fil de longueur L et de rayon r parcouru
par un courant électrique I, de la gauche vers la droite, qui provoque l’échauf-
fement du fil. Le fil a une conductivité électrique σ et un coefficient Thomson
τ . La chaleur se propage le long du fil jusqu’à son extrémité sans qu’il ait de
dissipation par sa surface latérale. L’effet Joule est négligeable par rapport à
l’effet Thomson. L’extrémité gauche est maintenu à la température constante
T0. Déterminer le profil de température T (x) le long du fil lorsqu’il a atteint un
état stationnaire. Donner aussi une expression de la température à l’extrémité
droite en termes du coefficient Thomson τ et de la résistance électrique R du
fil.

11.5 Solution

Dans le référentiel du fil, i.e. v = 0, en absence de contrainte mécanique exercée
sur le métal, i.e. πu = 0, et dans un état stationnaire, i.e. u̇ = 0, l’équation de
continuité de l’énergie interne (10.43) impose la condition,

∇ · ju = 0

Ainsi, la densité de puissance (11.103) se réduit à,

jq ·
(
τ∇T −

jq
σ

)
= 0
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Elle doit être satisfaite pour toute densité de courant électrique conductif jq.
Ainsi,

∇T =
jq
σ τ

D’après la relation (11.22), le gradient de température est donné par,

∇T =
T (x)− T0

x
x̂

La densité de courant électrique conductif jq s’écrit,

jq =
I

π r2
x̂

où I est le courant électrique. Ainsi,

T (x) = T0 +
I

π r2 σ τ
x

A l’extrémité droite, i.e. x = L, la température est,

T (L) = T0 +
LI

π r2 σ τ

La résistance électrique R (L) du fil de résistivité ρ = 1/σ, de longueur L et de
section d’aire A = π r2 est donnée par,

R (L) = ρ
L

A
=

1

σ

L

π r2

Par conséquent, la température à l’extrémité droite s’écrit,

T (L) = T0 +
R (L) I

τ

11.6 Echangeur de chaleur

Un échangeur de chaleur est constitué de deux tubes identiques séparés par
une paroi diatherme de section A, d’épaisseur h et de conductivité thermique
κ. Dans les deux tubes, un liquide s’écoule aux vitesses uniformes v1 = v1 x̂
et v2 = − v2 x̂, avec v1 > 0 et v2 > 0, où x̂ est le vecteur unitaire parallèle
à l’écoulement du liquide dans le tube 1. La température T1 du liquide dans
le tube 1 est plus grande que la température T2 du liquide dans le tube 2, i.e.
T1 > T2. Ainsi, il y a une densité de courant de chaleur jQ = jQ ŷ, avec jQ > 0,
qui traverse la paroi séparant les tubes, où ŷ est le vecteur unitaire orthogonal
à la paroi, orienté positivement du tube 1 au tube 2. Il n’y a pas de densité de
courant de liquide à travers la paroi, i.e. jC = 0. La conductivité thermique est
considérée comme négligeable dans la direction de l’écoulement du flux mais
elle est suffisamment importante dans la direction orthogonale pour garantir
une température homogène à travers toute section des deux tubes. On considère
que l’échangeur de chaleur a atteint un état stationnaire.
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1) Montrer que les profils de température dans les fluides sont donnés par les
équations différentielles,

∂x T1 = − κ

h2 c1 v1
(T1 − T2 )

∂x T2 =
κ

h2 c2 v2
(T1 − T2 )

où c1 et c2 sont les densités de chaleur spécifiques des liquides 1 et 2, κ est
la conductivité thermique de la paroi diatherme.

2) Montrer que la densité de courant convectif de chaleur j = c1 v1 T1+c2 v2 T2
est homogène.

3) Déterminer la différence de température ∆T (x) = T1 (x)− T2 (x).

4) Déterminer les profils de température T1 (x) et T2 (x).

5) Montrer que sur une distance suffisamment courte,

T1 (x) =
j + c2 v2 ∆T (0)

c1 v1 + c2 v2
− κ∆T (0)

h2 c1 v1
x

T2 (x) =
j − c1 v1 ∆T (0)

c1 v1 + c2 v2
+
κ∆T (0)

h2 c2 v2
x

11.6 Solution

1) D’après la relation (10.101), vu qu’il n’y a pas de densité de courant de
liquide à travers la paroi, i.e. jC = 0, la densité de courant de chaleur jQ
à travers la paroi est égale à la densité de courant d’énergie interne ju2,
qui est l’opposé de la densité d’énergie interne ju1 due à la conservation
d’énergie,

jQ = − ju1 = ju2

Etant donné que le flux de liquide est uniforme dans les deux tubes, il
n’y a pas de dilatation du fluide, i.e. ∇ · v1 = ∇ · v2 = 0. De plus, en
absence de contrainte mécanique exercée sur le liquide, i.e. πu1 = πu2 = 0,
les équations de continuité de l’énergie interne (10.43) pour le liquide dans
les tubes 1 et 2 peut être écrit comme,

u̇1 = −∇ · ju1 = ∇ · jQ
u̇2 = −∇ · ju2 = −∇ · jQ

Les densités d’énergie interne u1 et u2 sont écrites en termes des tempéra-
tures T1 et T2 des liquides comme,

u1 = c1 T1 et u2 = c2 T2

Dans un état stationnaire, les dérivées temporelles des densités d’énergie
interne s’annulent, i.e. ∂t u1 = ∂t u2 = 0. Ainsi, à l’aide de la relation (10.18)
pour les densités d’énergies internes u1 et u2 dans le cas particulier de flux
uniformes de liquide de vitesses v1 = v1 x̂ et v2 = − v2 x̂, on obtient,

u̇1 = ∂t u1 + v1 ·∇u1 = v1 ∂x u1 = c1 v1 ∂x T1

u̇2 = ∂t u2 + v2 ·∇u2 = − v2 ∂x u2 = − c2 v2 ∂x T2
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D’après l’équation (10.104) pour une section infinitésimale de de paroi de
volume dV , de section infinitésimale d’aire dA et d’épaisseur h, la puissance
thermique est donnée par,

PQ = − dV ∇ · jQ = −h dA∇ · jQ

Compte tenu de la loi de Fourier discrète (11.21), où la longueur caracté-
ristique du transfert de chaleur ` est l’épaisseur h de la paroi, la divergence
de la densité de courant de chaleur jQ s’écrit,

∇ · jQ = − PQ
h dA

= − κ

h2
(T1 − T2 )

Ainsi, les dérivées spatiales des températures sont données par,

∂x T1 = − κ

h2 c1 v1
(T1 − T2 )

∂x T2 =
κ

h2 c2 v2
(T1 − T2 )

2) Compte tenu des dérivées spatiales des températures, on a,

∂x j = ∂x (c1 v1 T1 + c2 v2 T2) = c1 v1 ∂x T1 + c2 v2 ∂x T2 = 0

ce qui implique que la densité de courant de chaleur convective j est ho-
mogène.

3) La différence entre les dérivée spatiales des températures s’écrit,

∂x (T1 − T2) = − 1

d
(T1 − T2)

où la longueur d’amortissement d est donnée par,

1

d
=

κ

h2 c1 v1
+

κ

h2 c2 v2
=

κ

h2

(
c1 v1 + c2 v2
c1 v1 c2 v2

)
Ainsi, la différence de température ∆T (x) = T1 (x)− T2 (x) décrôıt expo-
nentiellement,

∆T (x) = ∆T (0) exp
(
− x

d

)
4) La densité de courant de chaleur convective j peut être écrite comme,

j = c1 v1 T1 (x) + c2 v2

(
T1 (x)− ∆T (0) exp

(
− x

d

))
j = c1 v1

(
T2 (x) + ∆T (0) exp

(
− x

d

))
+ c2 v2 T2 (x)

Ainsi, les profils de température sont donnés par,

T1 (x) =
1

c1 v1 + c2 v2

(
j + c2 v2 ∆T (0) exp

(
− x

d

))
T2 (x) =

1

c1 v1 + c2 v2

(
j − c1 v1 ∆T (0) exp

(
− x

d

))
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5) Pour un transfert de chaleur qui a lieu sur une distance suffisamment courte,
i.e. au premier ordre en x/d, les profils de température se réduisent à,

T1 (x) =
j + c2 v2 ∆T (0)

c1 v1 + c2 v2
− κ∆T (0)

h2 c1 v1
x

T2 (x) =
j − c1 v1 ∆T (0)

c1 v1 + c2 v2
+
κ∆T (0)

h2 c2 v2
x

11.7 Thermocouple

On considère un fil de métal A dont les extrémités sont reliées à deux fils d’un
métal B qui sont branchés aux bornes gauche « g » et droite « d » d’un volt-
mètre (fig. 11.1). Une jonction entre les fils des métaux A et B est maintenue à
une température de référence fixe T1 (glace fondue ou azote liquide) et l’autre
jonction est à une température variable T2 que l’on désire mesurer. Les deux
bornes du voltmètre sont à la même température T pour que la mesure ne
dépende que des températures T1 et T2 aux extrémités du fil de métal A. Cette
mesure de température revient à mesurer l’effet Seebeck du métal A. On consi-
dère que les coefficients Seebeck εA et εB sont indépendants de la température.

1 2

Fig. 11.1 Un voltmètre détecte la chute de tension aux extrémités d’un circuit composé
d’un fil de métal B, d’un fil de métal A et d’un autre fil de métal B. Les jonctions entre
les fils sont à température T1 et T2 comme indiqué. Les deux bornes du voltmètre sont à
température T .

1) Déterminer les différences de potentiel électrochimiques µ̄1 − µ̄g, µ̄2 − µ̄1

et µ̄d − µ̄2.

2) Compte tenu du fait que le potentiel chimique µe des électrons ne dépend
que de la température T , en déduire la différence de potentiel électrostatique
∆ϕ = ϕd − ϕg entre les bornes du voltmètre.



10 Thermodynamique des processus irréversibles

3) Le pouvoir thermoélectrique εAB du thermocouple est défini comme la dé-
rivée de la différence de potentiel électrostatique en fonction de la tempé-
rature,

εAB =
∂∆ϕ

∂T2

Exprimer εAB en termes des coefficients Seebeck εA et εB .

11.7 Solution

1) Par définition, la densité de courant d’électrons est nulle dans un voltmètre,
i.e. je = 0. Par conséquent, la seconde relation phénoménologique (11.92)
appliquée aux métaux A et B s’exprime comme,

∇ µ̄A = − qe εA∇TA

∇ µ̄B = − qe εB∇TB

L’intégration des relations phénoménologiques le long des fils de métaux A
et B s’écrit,

µ̄1 − µ̄l =

∫
dr ·∇ µ̄B = − qe εB

∫
dr ·∇TB = − qe εB

∫ T1

T

dT ′

µ̄2 − µ̄1 =

∫
dr ·∇ µ̄A = − qe εA

∫
dr ·∇TA = − qe εA

∫ T2

T1

dT ′

µ̄r − µ̄2 =

∫
dr ·∇ µ̄B = − qe εB

∫
dr ·∇TB = − qe εB

∫ T

T2

dT ′

2) Le potentiel chimique µe des électrons ne dépend que de la température,
qui est la même aux bornes « g » et « d » du voltmètre. Par conséquent, le
potentiel chimique des électrons est le même aux bornes,

µl = µr

En utilisant la définition du potentiel électrochimique aux bornes du volt-
mètre,

µ̄l = µl + qeϕl

µ̄r = µr + qeϕr

la différence de potentiel électrochimique aux bornes du voltmètre s’exprime
comme,

∆ϕ = ϕr − ϕl =
1

qe
(µ̄r − µ̄l)

En substituant les trois expressions des différences de potentiel électrochi-
mique dans l’expressions précédente, on obtient,

∆ϕ = − εB (T1 − T )− εB (T − T2)− εA (T2 − T1)

= (εB − εA) (T2 − T1)
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3) En dérivant l’expression précédente par rapport à la température variable
T2, on obtient l’expression du pouvoir thermoélectrique,

εAB =
∂∆ϕ

∂T2
= εB − εA

11.8 Méthode de Harman

Une barre est contactée à chaque extrémité à des électrodes par des fils élec-
triques qui sont suffisamment épais pour qu’un courant électrique les traversent
mais suffisamment minces pour que le transfert de chaleur y soit négligeable.
Les résistances de contact et la chaleur dissipée par la barre sont négligeables.
Dans ces conditions expérimentales, on peut effectuer une mesure adiabatique
de la résistivité du matériau de la barre. Comme Harman le suggérait dans
son célèbre article,

(1)

on peut trouver des conditions expérimentales telles que
les effets Joule et Thomson soient négligeables. Utiliser les relations phénomé-
nologiques linéaires (11.92) pour montrer que la résistivité adiabatique ainsi
mesurée s’écrit,

ρad = ρ

(
1 +

ε2

κ ρ
T

)
où ρ = 1/σ est la résistivité isotherme, κ est la conductivité thermique et ε est
le coefficient Seebeck du matériau de la barre.

11.8 Solution

Dans l’expérience considérée, la densité de courant électrique conductif est
jq = qe je et il n’y a pas d’effet chimique, i.e. ∇µe = 0, ce qui implique
que ∇ µ̄e = qe∇ϕ d’après la relation (11.93) vu que la charge électrique qe est
une constante. Ainsi, les équations (11.95) de transport d’écrivent,{

jq = −σε∇T − σ∇ϕ

jQ = −κ∇T + T ε jq

Une résistivité adiabatique est mesurée en absence de densité de courant de
chaleur, i.e. jQ = 0 (sect. 11.4.9). Ainsi, la deuxième équation de transport
implique que la température est donnée par,

∇T =
ε

κ
T jq

Par conséquent, d’après la première équation de transport, la densité de courant
électrique conductif s’écrit,

jq = −σ∇ϕ− σ
ε2

κ
T jq

(1)
T. C. Harman, Special Techniques for Measurement of Thermoelectric Properties, J. App.
Phys. 29, 1373 (1958).
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La conductivité isotherme σ est l’inverse de la résistivité isotherme σ, i.e.
σ = 1/ρ. Par conséquent, compte tenu de la définition (11.81) de la résisti-
vité adiabatique ρad, le gradient de potentiel électrique est donné par,

∇ϕ = − ρ
(

1 +
ε2

ρ κ
T

)
jq = − ρad jq

ce qui implique que la résistivité adiabatique ρad s’écrit en termes de la résis-
tivité isotherme comme,

ρad = ρ

(
1 +

ε2

ρ κ
T

)
Harman suggère de déterminer la résistivité ρ dans le même échantillon en
utilisant un courant alternatif de fréquence suffisamment élevée pour qu’au-
cun gradient de température n’ait le temps de se former durant chaque demi-
période du courant. Alors le rapport

(
ε2/ρ κ

)
T peut être déduit des mesures

des résistivités ρ et ρad. Ce rapport est appelé le coefficient ZT du matériau,
c’est le facteur de mérite qui caractérise la production d’énergie thermoélec-
trique des matériaux. Comme alternative à une haute fréquence, une méthode
transitoire a été suggérée,

(2)

et des corrections pour des conditions de mesure
non-adiabatiques dans un état stationnaire ont aussi été analysées.

(3)

11.9 Générateur Peltier

Un générateur Peletier est constitué de deux éléments thermoélectriques reliés
en série (fig. 11.2). Le côté gauche du générateur est maintenu à une tempéra-
ture T+ et le côté droit à une température T−. Le courant électrique I généré
par le générateur Peltier circule à travers les matériaux thermoélectriques dé-
notés 1 et 2. La plaque chauffée à température T+ relie électriquement les deux
matériaux, mais elle n’est pas électriquement accessible à l’utilisateur. Son po-
tentiel électrique est V +. Les autres extrémités des matériaux thermoélectriques
sont du côté froid, à température T−. Ils sont reliés aux bornes électrique du
dispositif. Une résistance de charge R0 est reliée à ces bornes. La tension V est
la différence de potentiel électrique entre les bornes.

On analyse le fonctionnement de ce générateur à l’aide des équations de trans-
port de la charge électrique et de le chaleur,

jq1 = −σ1 ε1 ∇T1 − σ1 ∇ϕ1 et jQ1
= −κ1 ∇T1 + T1 ε1 jq1

jq2 = −σ2 ε2 ∇T2 − σ2 ∇ϕ2 et jQ2
= −κ2 ∇T2 + T2 ε2 jq2

(2)
E. E. Castillo, C. L. Hapenciuc, and Th. Borca-Tasciuc, Thermoelectric characterization
by transient Harman method under non-ideal contact and boundary conditions, Rev. Sci.
Instruments 81, 033902 (2010).

(3)
I.-J. Roh, Y. G. Lee, M.-S. Kang, J.-U. Lee, S.-H. Baek, S. K. Kim, B.-K. Ju, D.-B. Hyun,
J.-S. Kim, B. Kwon, Harman Measurements for Thermoelectric Materials and Modules
under Non-Adiabatic Conditions, Scientific Reports, 6, 39131 (2016).
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I
1 2

I

R0

V +

T –

T + T +

T – T – V
V = 0

Fig. 11.2 Un générateur Peltier a une charge représentée par la résistance R0 reliée aux
bornes. V est la tension entre les bornes. Le pont électrique à V + n’est pas accessible à
l’utilisateur. Les régions notées 1 et 2 représentent les deux matériaux thermoélectriques. Les
régions notées T+ et T− sont les côtés chaud et froid du dispositif.

Les matériaux thermoélectriques 1 et 2 ont une longueur d et une section d’aire
A, ce qui peut s’écrire comme,

d =

∫ d

0

dr · r̂ A =

∫
S

dS · r̂

où r̂ est un vecteur unitaire orienté dans le sens des aiguilles d’une montre
le long de la densité de courant électrique jq, et les vecteurs infinitésimaux
de longueur et de surface dr et dS sont orienté dans la même direction. La
différence de température entre le côté chaud et le côté froid s’écrit,

∆T = T+ − T− =

∫ d

0

dr ·∇T1 =

∫ d

0

dr · (−∇T2)

De manière similaire, les différences de potentiel électrique ∆ϕ1 et ∆ϕ2 entre
les côtés chaud et froid s’écrivent,

∆ϕ1 = V + =

∫ d

0

dr ·∇ϕ1

∆ϕ2 = V + − V =

∫ d

0

dr · (−∇ϕ2)

La conservation de la charge électrique implique que les densités de courant
électrique sont les mêmes pour chaque matériau, i.e. jq1 = jq2 . Le courant
électrique I traversant les matériaux 1 et 2 sont donnés par l’intégrale des
densités de courant électrique jq1 et jq2 sur la surface A de la section,

I =

∫
S

jq1 · dS =

∫
S

jq2 · dS
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D’après la relation (10.104), les puissances thermiques PQ1 et PQ2 sont les inté-
grales des densités de courant de chaleur jQ1

et jQ2
, traversant les matériaux

1 et 2, sur la surface A de la section,

PQ1
=

∫
S

(
− jQ1

)
· dS PQ2

=

∫
S

jQ2
· dS

Déterminer :

1) la puissance thermique P ′Q appliquée sur le côté chaud du dispositif lors-
qu’aucun courant électrique le traverse.

2) la résistance électrique R des deux matériaux thermoélectriques lorsque les
températures sont égales, i.e. T+ = T−, et qu’aucun courant électrique
traverse la résistance R0, i.e. lorsque R0 = ∞. Dans ce cas, un courant
électrique traverse les matériaux thermoélectriques sans traverser la résis-
tance.

3) le courant électrique I en termes de la différence de température ∆T .

4) le rendement thermodynamique du générateur défini comme,

η =
R0 I

2

PQ

où ici, PQ est la puissance thermique du côté chaud lorsque le courant élec-
trique traverse le dispositif. Montrer que la résistance de charge optimale
s’écrit,

R0 = R
√

1 + ζ

où ζ est un paramètre sans dimension donné par,
(4)

ζ =
T+ (ε1 − ε2)

2

(κ1 + κ2)

(
1

σ1
+

1

σ2

)
11.9 Solution

1) Afin de déterminer la puissance thermique P ′Q lorsqu’aucun courant élec-
trique ne circule dans le circuit, i.e. jq1 = jq2 = 0, on intègre les équations
de transport sur le volume V . Les intégrales sur le volume sont le produit
des intégrales sur la section d’aire A et des intégrales sur la longueur d des
matériaux thermoélectriques,∫

S

(
− j′Q1

)
· dS

∫ d

0

dr · r̂ = κ1

∫ d

0

dr ·∇T1

∫
S

dS · r̂∫
S

j′Q2
· dS

∫ d

0

dr · r̂ = κ2

∫ d

0

dr · (−∇T2)

∫
S

dS · r̂

(4)
H. J. Goldsmid, Introduction to Thermoelectricity, Springer (2010).
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ce qui se réduit à,

P ′Q1
= κ1

A

d
∆T P ′Q2

= κ2
A

d
∆T

Ainsi, la puissance thermique totale est donnée par,

P ′Q = P ′Q1
+ P ′Q2

= (κ1 + κ2)
A

d
∆T

2) Si les températures des sources chaude et froide sont égales, i.e. T+ =
T−, les gradients de température s’annulent, i.e. ∇T1 = ∇T2 = 0, ce
qui implique qu’il n’y a pas d’effet thermoélectrique. Les intégrales des
équations de transport de la charge électrique sur le volume sont le produit
des intégrales sur la section d’aire A et des intégrales sur la longueur d des
matériaux thermoélectriques,∫

S

(
− jq1

)
· dS

∫ d

0

dr · r̂ = σ1

∫ d

0

dr ·∇ϕ1

∫
S

dS · r̂∫
S

(
− jq2

)
· dS

∫ d

0

dr · r̂ = −σ2
∫ d

0

dr · (−∇ϕ2)

∫
S

dS · r̂

Etant donné que la résistance de charge est infinie, i.e. R0 =∞, le courant
électrique utilisé pour la mesure de la résistance du dispositif circule dans
la direction opposée, I → − I compte tenu de la condition V + < V . Dans
ce cas, les équations de transport de la charge électrique intégrées sur le
volume se réduisent à,

I = σ1
A

d
∆ϕ1 = σ1

A

d
V +

I = −σ2
A

d
∆ϕ2 = −σ2

A

d

(
V + − V

)
La différence de potentiel électrique entre les extrémités des matériaux ther-
moélectriques 1 et 2 branchés en série est donnée par,

V = ∆ϕ1 − ∆ϕ2 = I
d

A

(
1

σ1
+

1

σ2

)
= I

2 d

A

1

σ

où σ est la conductivité effective des deux matériaux thermoélectriques.
Etant donné que la résistivité électrique ρ est l’inverse de la conductivité
électrique effective ρ,

ρ =
1

σ
=

1

2

(
1

σ1
+

1

σ2

)
Ainsi, la différence de potentiel électrique entre les extrémités des matériaux
thermoélectriques s’écrit,

V = ρ
2 d

A
I = RI
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où 2 d est la longueur effective deux deux matériaux de longueur d chacun,
de section d’aire A, branchés en série, et R est leur résistance effective.
Ainsi,

R = ρ
2 d

A
=

1

2

(
1

σ1
+

1

σ2

)
2 d

A

3) Les intégrales des équations de transport de la charge électrique sur le
volume sont le produit des intégrales sur la section d’aire A et des intégrales
sur la longueur d des matériaux thermoélectriques,∫

S

jq1 · dS
∫ d

0

dr · r̂ = −σ1 ε1
∫ d

0

dr ·∇T1

∫
S

dS · r̂

− σ1

∫ d

0

dr ·∇ϕ1

∫
S

dS · r̂∫
S

jq2 · dS
∫ d

0

dr · r̂ = σ2 ε2

∫ d

0

dr · (−∇T2)

∫
S

dS · r̂

+ σ2

∫ d

0

dr · (−∇ϕ2)

∫
S

dS · r̂

Les équations de transport de la charge électrique intégrées sur le volume
se réduisent à,

I = −σ1 ε1
A

d
∆T − σ1

A

d
V +

I = σ2 ε2
A

d
∆T + σ2

A

d

(
V + − V

)
La loi d’Ohm pour la résistance de charge s’écrit,

V = R0 I

Compte tenu de cette relation qui caractérise les propriétés électriques de
la résistance de charge, les équations de transport de la charge électrique
peuvent être mise sous la forme suivante,

V + = − 1

σ1

(
d

A
I − σ1 ε1 ∆T

)
V + =

1

σ2

((
d

A
+ σ2R0

)
I − σ2 ε2 ∆T

)
ce qui implique que le courant électrique est donné par,

I =
ε2 − ε1(

1

σ1
+

1

σ2

)
d

A
+R0

∆T =
ε2 − ε1
R+R0

∆T

Ce résultat pour le courant I est cohérent avec l’expression du courant
obtenue an analysant la boucle de Seebeck (sect. 11.6.1), qui est équivalent
à un générateur Peltier (fig. 11.2) pour lequel la résistance de charge est
mise à zéro, i.e. R0 = 0.
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4) Afin de déterminer la puissance thermique PQ qui entre à travers la plaque
chaude à température T+, on intègre les équations de transport de la cha-
leur sur le volume V . Les intégrales sur le volume sont le produit des
intégrales sur la section d’aire A et des intégrales sur la longueur d des
matériaux thermoélectriques,∫

S

(
− jQ1

)
· dS

∫ d

0

dr · r̂ = κ1

∫ d

0

dr ·∇T1

∫
S

dS · r̂

− T+ ε1

∫
S

jq1 · dS
∫ d

0

dr · r̂∫
S

jQ2
· dS

∫ d

0

dr · r̂ = κ2

∫ d

0

dr · (−∇T2)

∫
S

dS · r̂

+ T+ ε2

∫
S

jq2 · dS
∫ d

0

dr · r̂

qui se réduit à,

PQ1
= κ1

A

d
∆T − T+ ε1 I

PQ2
= κ2

A

d
∆T + T+ ε2 I

et implique que,

PQ = PQ1 + PQ2 = (κ1 + κ2)
A

d
∆T + T+ (ε2 − ε1) I

Par conséquent, le rendement η pour une résistance de charge R0 est donné
par,

η =
R0 I

2

PQ
=

R0
(ε2 − ε1)

2
∆T 2

(R+R0)
2

(κ1 + κ2)
A

d
∆T + T+ (ε2 − ε1)

2 ∆T

R+R0

qui peut être mis sous la forme,

η =
∆T

T+

R0

R

(κ1 + κ2)

T+ (ε2 − ε1)
2

(
1

σ1
+

1

σ2

)(
1 +

R0

R

)2

+

(
1 +

R0

R

)
A l’aide de la définition du coefficient ζ > 0, de la différence de température
∆T = T+ − T− > 0 et du rapport r = 1 + R0/R > 0, le rendement se
réduit à,

η =

(
1− T−

T+

)
r − 1

ζ−1 r2 + r

Afin de trouver la résistance de charge optimale, on doit optimiser le ren-
dement η par rapport au rapport r,

dη

dr
=

(
1− T−

T+

)
ζ−1 r2 + r − (r − 1)

(
ζ−1 r2 + r

)
(ζ−1 r2 + r)

2 = 0
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ce qui implique que,
r2 − 2 r − ζ = 0

Ainsi, le rapport optimal r > 0, est donné par,

r = 1 +
√

1 + ζ

Par conséquent, pour une résistance de charge optimale, le rendement est
donné par,

η =

(
1− T−

T+

)
ζ
√

1 + ζ(
1 +
√

1 + ζ
)2

+ ζ
(
1 +
√

1 + ζ
) ≤ 1− T−

T+

Dans la limite ζ → ∞, le rendement du générateur Peltier η tend vers le
rendement de Carnot ηC (7.46),

lim
ζ→∞

η = 1− T−

T+
= ηC

11.10 Coefficient ZT d’un matériau thermoélectrique

Les propriétés de transport d’un matériau thermoélectrique de section d’aire A
et de longueur L sont définies par les équations de transport,

jq = −σ E∇T − σ∇ϕ et jQ = −κ∇T + T ε jq

en conformité avec les relations (11.92), où ∇µe = 0, et (11.95). Le rendement
η du matériau thermoélectrique est défini comme,

η = − Pq
PQ

où PQ est la puissance thermique et Pq est la puissance électrique définie
comme,

Pq =

∫
V

jq · (−∇ϕ) dV

Ecrire le rendement η en fonction du rapport,
(5)

r =
I

κ

L

A

1

∆T

où I est le courant électrique traversant le matériau thermoélectrique. Dans
la limite où l’effet thermoélectrique est beaucoup plus petit que la puissance
thermique, i.e. r ε� 1/T+, montrer que le rendement maximal η s’écrit,

η =

(
1− T−

T+

)
σ ε2

4κ
T+

Le coefficient
(
σ ε2/κ

)
T+ est appelé le « coefficient ZT » du matériau thermo-

électrique. Le terme entre parenthèses est le rendement de Carnot.

(5)
G. J. Snyder, T. S. Ursell, Thermoelectric Efficiency and Compatibility, Phys. Rev. Lett.
91 (4) 138301 (2003).
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11.10 Solution

Afin de déterminer la puissance thermique PQ, on intègre les équations de
transport sur le volume V . L’intégrale sur le volume est le produit de l’inté-
grale sur la section d’aire A et de l’intégrale sur la longueur L du matériau
thermoélectrique,∫
S

jQ · dS
∫ L

0

dr · r̂ = κ

∫ L

0

dr · (−∇T )

∫
S

dS · r̂+T+ε

∫
S

jq · dS
∫ L

0

dr · r̂

où r̂ est le vecteur unitaire dans le sens des densités de courant jQ et jq, et
les vecteurs longueur infinitésimale dr et surface infinitésimale dS sont orientés
dans le même sens. La puissance thermique PQ et le courant électrique I sont
définis comme,

PQ =

∫
S

jQ · dS I =

∫
S

jq · dS ∆T =

∫ L

0

dr · (−∇T )

L’aire A de la section et la longueur L peuvent être écrites comme,

A =

∫
S

dS · r̂ L =

∫ L

0

dr · r̂

Ainsi, la puissance thermique PQ s’écrit,

PQ = κ
A

L
∆T + T+ ε I

De manière similaire, afin de déterminer la puissance électrique Pq, on déduit
la différence de potentiel électrique ∇ϕ de l’équation de transport de la charge
électrique et on intègre le produit scalaire entre −∇ϕ et la densité de courant
électrique jq sur le volume V du matériau thermoélectrique,∫
V

jq · (−∇ϕ) dV = − ε
∫
S

jq · dS
∫ L

0

dr · (−∇T ) +
1

σ

∫
S

jq · dS
∫ L

0

jq · dr

La puissance électrique Pq est définie comme,

Pq =

∫
V

jq · (−∇ϕ) dV

et

I
L

A
=

∫ L

0

jq · dr

Ainsi, la puissance électrique Pq s’écrit,

Pq = − ε I ∆T +
I2

σ

L

A

Par conséquent, le rendement η du matériau thermoélectrique est donné par,

η = − Pq
PQ

=
ε I ∆T − I2

σ

L

A

κ
A

L
∆T + T+ ε I
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et peut être mis sous la forme,

η =
∆T

T+

ε− I

σ

L

A

1

∆T

ε+
κ

I

A

L

∆T

T+


A l’aide du rapport sans dimension,

r =
I

κ

L

A

1

∆T

le rendement η devient,

η =
∆T

T+

 ε− κ

σ
r

ε+
1

r

1

T+

 = η =
∆T

T+

r
(
ε− κ

σ
r
)

r ε+
1

T+


A l’aide de la relation ∆T = T+− T− dans la limite r ε� 1/T+, le rendement
η se réduit à,

η =

(
1− T−

T+

)
T+ r

(
ε− κ

σ
r
)

Afin de déterminer le rapport optimal r, on doit optimiser le rendement η par
rapport à r,

dη

dr
=

(
1− T−

T+

)
T+

(
ε− 2κ

σ
r

)
= 0

ce qui implique que le rapport optimal est,

r =
σ ε

2κ

Ainsi, le rendement optimal du matériau thermoélectrique est,

η =

(
1− T−

T+

)
σ ε2

4κ
T+

qui est un quart du produit du rendement de Carnot et du « coefficient ZT »(
σ ε2/κ

)
T+. Dans la limite où l’effet thermoélectrique est beaucoup plus petit

que la puissance thermique, on a,

I
ε

κ

L

A

T+

∆T
� 1

D’après la loi d’Ohm et l’effet Seebeck, l’ordre de grandeur de l’intensité du
courant électrique I est donnée par,

I =
ε∆T

R
= ε σ∆T

A

L

Ainsi, la condition limite peut être mise sous la forme,

σ ε2

κ
T+ � 1
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11.11 Jonction thermoélectrique

On considère un barreau constitué de deux métaux différents A et B d’épaisseur
d en contact thermique. Les métaux sont définis par leur conductivité électrique
σA ou σB , leur conductivité thermique κA ou κB , et leur coefficient Seebeck εA
ou εB . Ces propriétés peuvent toutes être considérés comme indépendantes de
la température. L’extrémité du métal A est en contact avec un bain thermique
à haute température et l’extrémité du métal B est en contact avec un bain
thermique à basse température ce qui impose une différence de température ∆T
à travers le barreau. Une densité de courant électrique jq constante traverse
le barreau. On mesure une différence de potentiel électrostatique ∆ϕ entre les
extrémités du barreau (fig. 11.3).

Fig. 11.3 Un courant électrique traverse un barreau formés de deux métaux différents A
et B en contact électrique. La figure indique les variations de potentiel électrostatique et de
température à travers chaque métal. L’origine de l’axe Or est située à la jonction entre les
deux métaux.

Par conservation de la charge électrique en régime stationnaire, la densité
de courant électrique jq et la densité de courant de chaleur jQ sont conservés à
la jonction entre les métaux A et B, i.e. jq = jqA = jqB et jQ = jQA = jQB . Le
courant électrique I qui traverse les métaux A et B est l’intégrale des densités
de courant jqA et jqB sur la surface A de la section,

I =

∫
S

jqA · dS =

∫
S

jqB · dS

où le vecteur de surface infinitésimale dS est orienté le long de la densité de
courant électrique jq. La puissance thermique PQ exercée sur les métaux A et
B est l’intégrale des densités de courant de chaleur jQA et jQB sur la surface
A de la section,

PQ =

∫
S

jQA · dS =

∫
S

jQB · dS

Les différences de température ∆TA et ∆TB , et les différences de potentiel
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électrostatique ∆ϕA et ∆ϕB à travers les métaux A et B sont donnés par,

∆TA =

∫ 0

− d
dr · (−∇TA) et ∆TB =

∫ d

0

dr · (−∇TB)

∆ϕA =

∫ 0

− d
dr · (−∇ϕA) et ∆ϕB =

∫ d

0

dr · (−∇ϕB)

où le vecteur de longueur infinitésimale dr est orienté le long de la densité de
courant électrique jq et de la densité de courant de chaleur jQ. La différence
de température ∆T et la différence de potentiel électrostatique ∆ϕ à travers
tout le barreau satisfont,

∆T = ∆TA + ∆TB et ∆ϕ = ∆ϕA + ∆ϕB

Les métaux A et B ont une longueur d et une section de surface A. Ainsi,

d =

∫ 0

− d
dr · r̂ =

∫ d

0

dr · r̂ et A =

∫
S

dS · r̂

où r̂ est le vecteur unitaire orienté dans le sens des aiguilles d’une montre le
long de la densité de courant électrique jq et de la densité de courant de chaleur
jQ.

1) Exprimer les équations de transport de la charge électrique et de la cha-
leur (11.95) pour les métaux A et B à la jonction entre les métaux en termes
des forces généralisées ∇TA, ∇TB , ∇ϕA, ∇ϕB et de la température TAB
evaluée à la jonction entre les métaux.

2) Si l’épaisseur d des métaux est suffisamment petite, les gradients peuvent
être considérés comme indépendants de la position. Dans ce cas, intégrer
l’équation de transport de la charge électrique entre les extrémités des mé-
taux A et B.

3) Dans ce même cas, intégrer l’équation de transport de la chaleur entre les
extrémités des métaux A et B.

4) En déduire les expressions de ∆TA et ∆TB en termes de I, ∆T et des
coefficients phénoménologiques.

5) En déduire les expressions de ∆ϕA et ∆ϕB en termes de I, ∆T et des
coefficients phénoménologiques.

6) Déterminer l’expression de ∆ϕ en termes de TAB , I, ∆T et des coefficients
phénoménologiques.

11.11 Solution

1) Les équations de transport de la charge électrique à travers les métaux A
et B à la jonction entre ces métaux s’écrivent,

jqA = −σA εA∇TA − σA∇ϕA

jqB = −σB εB∇TB − σB∇ϕB
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De manière similaire, les équations de transport de la chaleur à travers les
métaux A et B à la jonction entre ces métaux s’écrivent,

jQA = −κA∇TA + TAB εA jq

jQB = −κB∇TB + TAB εB jq

2) Les intégrales des équations de transport de la charge électrique sur le
volume sont le produit des intégrales sur la section de surface A et des
intégrales sur la longueur d des métaux,∫

S

jqA · dS
∫ 0

− d
dr · r̂ = σA εA

∫ 0

− d
dr · (−∇TA)

∫
S

dS · r̂

+ σA

∫ 0

− d
dr · (−∇ϕA)

∫
S

dS · r̂∫
S

jqB · dS
∫ d

0

dr · r̂ = σB εB

∫ d

0

dr · (−∇TB)

∫
S

dS · r̂

+ σB

∫ d

0

dr · (−∇ϕB)

∫
S

dS · r̂

En utilisant les relations intégrales pour I, ∆TA, ∆TB , ∆ϕA et ∆ϕB , l’inté-
grale de l’équation de transport de la charge électrique à travers les métaux
A et B peut être mise sous la forme suivante,

I =
A

d
(σA εA ∆TA + σA ∆ϕA) =

A

d
(σB εB ∆TB + σB ∆ϕB)

3) Les intégrales des équations de transport de la chaleur sur le volume sont
le produit des intégrales sur la section de surface A et des intégrales sur la
longueur d des métaux,∫

S

jQA · dS
∫ 0

− d
dr · r̂ = κA

∫ 0

− d
dr · (−∇TA)

∫
S

dS · r̂

+ TAB εA

∫
S

jqA · dS
∫ 0

− d
dr · r̂∫

S

jQB · dS
∫ d

0

dr · r̂ = κB

∫ d

0

dr · (−∇TB)

∫
S

dS · r̂

+ TAB εB

∫
S

jqB · dS
∫ d

0

dr · r̂

En utilisant les relations intégrales pour PQ, I, ∆TA et ∆TB , l’intégrale de
l’équation de transport de la chaleur à travers les métaux A et B peut être
mise sous la forme suivante,

PQ = κA
A

d
∆TA + TAB εA I = κB

A

d
∆TB + TAB εB I
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4) En utilisant la relation ∆TB = ∆T − ∆TA dans l’équation de transport de
la chaleur, on obtient,

κA ∆TA + TAB εA
d

A
I = κB (∆T − ∆TA) + TAB εB

d

A
I

qui peut être mis sous la forme suivante,

∆TA =
εB − εA
κA + κB

TAB
d

A
I +

κB
κA + κB

∆T

En utilisant la relation ∆TA = ∆T − ∆TB dans l’équation précédente, on
obtient,

∆TB =
εA − εB
κA + κB

TAB
d

A
I +

κA
κA + κB

∆T

5) En substituant l’expression pour ∆TA dans l’équation de transport de la
charge électrique, on obtient,

I = σA
εA (εB − εA)

κA + κB
TAB I + σA

εA κB
κA + κB

A

d
∆T + σA

A

d
∆ϕA

qui peut être mis sous la forme suivante,

∆ϕA =

(
1

σA
− εA (εB − εA)

κA + κB
TAB

)
d

A
I − εA κB

κA + κB
∆T

De manière similaire, en substituant l’expression pour ∆TB dans l’équation
de transport de la charge électrique, on obtient,

I = σB
εB (εA − εB)

κA + κB
TAB I + σB

εB κA
κA + κB

A

d
∆T + σB

A

d
∆ϕB

qui peut être mis sous la forme suivante,

∆ϕB =

(
1

σB
− εB (εA − εB)

κA + κB
TAB

)
d

A
I − εB κA

κA + κB
∆T

6) Une expression de la différence de potentiel électrostatique ∆ϕ entre les
extrémités du barreau est obtenue en substituant les expressions pour ∆ϕA
et ∆ϕB dans l’équation ∆ϕ = ∆ϕA + ∆ϕB ,

∆ϕ =

[(
1

σA
+

1

σB

)
+

(εA − εB)
2

κA + κB
TAB

]
d

A
I − εA κB + εB κA

κA + κB
∆T

Le premier terme entre crochets représente la loi d’Ohm. Le dernier terme
de l’équation représente l’effet Seebeck et le deuxième terme entre crochets
impose des gradients thermiques dans chaque métal même dans le cas où
∆T = 0.

(6)

(6)
L. Gravier, S. Serrano-Guisan, F. Reuse, J.-Ph. Ansermet, « Spin-dependent Peltier effect
of perpendicular currents in multilayered nanowires », Phys. Rev. B 73, 052410, 2006.
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11.12 Effets de transport transverses

Un équation de transport comme la loi d’Ohm (11.74),

∇ϕ = −ρ · jq

lie deux vecteurs, qui sont la densité de courant électrique conductif jq et le
gradient de potentiel électrique ∇ϕ par une application linéaire, qui est la
résistivité électrique ρ. Mathématiquement, un vecteur est un tenseur de rang
1 et une application linéaire entre deux vecteurs est un tenseur de rang 2.

1) Montrer que la résistivité électrique ρ peut être décomposée en une somme
de la partie symétrique ρs et de la partie antisymétrique ρa.

2) Montrer que la partie antisymétrique ρa apporte une contribution au trans-
port qui peut être écrite comme,

∇a ϕ = − ρa
(
û× jq

)
où ∇a ϕ est la contribution antisymétrique au gradient de potentiel élec-
trique et û est un vecteur unitaire axial.
La décomposition et l’expression de la partie antisymétrique du gradient
de potentiel électrique est un résultat général qui s’applique pour toute
relation phénoménologique linéaire entre un vecteur densité de courant et
un vecteur force généralisée.

11.12 Solution

1) Les composantes du tenseur de résistivité symétrique de rang 2 s’écrivent,

ρsij =
1

2
(ρij + ρji)

Les composantes du tenseur de résistivité antisymétrique de rang 2 sont
données par,

ρaij =
1

2
(ρij − ρji)

Les composantes du tenseur de résistivité de rang 2 s’écrivent,

ρij =
1

2
(ρij + ρji) +

1

2
(ρij − ρji)

ce qui implique que,

ρij = ρsij + ρaij

Ainsi, le tenseur de résistivité ρ est la somme du tenseur de résistivité
symétrique ρs de rang 2 et du tenseur de résistivité antisymétrique ρa de
rang 2,

ρ = ρs + ρa
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2) L’application linéaire ρa · jq s’écrit en composantes comme, 0 ρa12 ρa13
− ρa12 0 ρa23
− ρa13 − ρa23 0

jq1jq2
jq3

 =

 ρa12 jq2 + ρa13 jq3
− ρa12 jq1 + ρa23 jq3
− ρa13 jq1 − ρa23 jq2


Le produit vectoriel ρa

(
û× jq

)
s’écrit en composantes comme,ρa û1ρa û2

ρa û3

×
jq1jq2
jq3

 =

ρa û2 jq3 − ρa û3 jq2
ρa û3 jq1 − ρa û1 jq3
ρa û1 jq2 − ρa û2 jq1


L’identification des composantes de ces deux vecteurs donne,

û1 = − ρa23
ρa

û2 =
ρa13
ρa

û3 = − ρa12
ρa

Le vecteur û est un vecteur unitaire axial,

û2 = û21 + û22 + û23 =
1

(ρa)
2

(
(ρa23)

2
+ (ρa13)

2
+ (ρa12)

2
)

= 1

ce qui implique que,

ρa =

√
(ρa23)

2
+ (ρa13)

2
+ (ρa12)

2

Ainsi, la partie antisymétrique du gradient de potentiel électrique est don-
née par,

∇a ϕ = −ρa · jq = − ρa
(
û× jq

)
où le vecteur unitaire axial û est écrit en composantes comme,

û =
1

ρa

− ρa23ρa13
− ρa12



11.13 Effet Hall

On considère un conducteur isotrope en présence d’un champ d’induction ma-
gnétiqueB. La résistivité électrique est un tenseur de rang 2 qui est une fonction
du champ d’induction magnétique B et la loi d’Ohm’s s’écrit,

∇ϕ = −ρ (B) · jq
La réversibilité de la dynamique à l’échelle microscopique implique que la trans-
posée du tenseur de résistivité électrique est obtenue en inversant l’orientation
du champ d’induction magnétique B.

(7)

Ainsi,

ρT (B) = ρ (−B)

(7)
L. D. Landau, E. M. Lifshitz, L.-P. Pitaevskii, Electrodynamics of Continuous Media,
Landau and Lifshitz Course of Theoretical Physics volume 8, Pergamon Press, 3rd edition
(2000).
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Ce résultat ne peut pas être établi dans le cadre de la thermodynamique mais
requiert l’usage de la physique statistique. En électrodynamique linéaire, si le
champ d’induction magnétiqueB est appliqué perpendiculairement à la densité
de courant électrique conductif jq, montrer que la loi d’Ohm peut s’écrire,

∇ϕ = −ρ · jq − H jq ×B

où le premier terme est la loi d’Ohm (11.74) en absence de champ d’induc-
tion magnétique et le deuxième terme est l’effet Hall (11.75) dans la direction
orthogonale au champ d’induction magnétique B et à la densité de courant
électrique conductif. Utiliser le résultat établi en sect. 11.12.

11.13 Solution

Le tenseur de résistivité électrique ρ (B) peut s’écrire comme la somme d’une
partie symétrique ρs (B) et d’une partie antisymétrique ρa (B) (sect. 11.12).
Ainsi, la loi d’Ohm (11.74) est mise sous la forme suivante,

∇ϕ = −ρs (B) · jq − ρa (B) · jq
Le tenseur de résistivité électrique ρ (B) est une fonction linéaire du champ
d’induction magnétique B dans le cadre de électromagnétisme linéaire. D’après
la relation statistique basée sur la réversibilité de la dynamique à l’échelle mi-
croscopique, le tenseur de résistivité électrique est antisymétrique en présence
d’un champ d’induction magnétique B. Ainsi, la partie symétrique du tenseur
de résistivité ρs = ρ (0) ≡ ρ est indépendante du champ d’induction magné-
tique B,

ρT (0) = ρ (0)

D’après le résultat établi pour la partie antisymétrique (sect. 11.12), la loi
d’Ohm est mise sous la forme,

∇ϕ = −ρ · jq − ρa (B) û× jq
où ρa (B) est une fonction linéaire du champ d’induction magnétique B et
û est un vecteur unitaire sans dimension qui peut être choisi orthogonal à la
densité de courant électrique conductif jq sans perte de généralité. Le vecteur
unitaire d’anisotropie û est dû à la présence du champ d’induction magnétique
B qui brise l’isotropie du conducteur est donne lieu à des termes hors diago-
naux dans le tenseur de résistivité électrique ρ (B). Par conséquent, le vecteur
unitaire d’anisotropie û est orienté le long du champ d’induction magnétique
B. Lorsque le champ d’induction magnétique B est appliqué perpendiculai-
rement à la densité de courant électrique conductif jq, le terme d’anisotropie
dans la loi d’Ohm peut être mis sous la forme,

ρa (B) û× jq = −HB × jq
où H = − ρa (B) /‖B‖ est un coefficient scalaire. Ainsi, la loi d’Ohm est mise
sous la forme,

∇ϕ = −ρ · jq − H jq ×B

où le premier terme est la loi d’Ohm (11.74) et le second terme est l’effet
Hall 11.75.
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11.14 Transport de chaleur et symétrie cristalline

On considère un cristal de symétrie hexagonale, c’est-à-dire qu’il est invariant
sous une rotation d’angle π/6 autour de l’axe vertical dans le plan horizontal.
Cela signifie que les propriétés physiques du cristal sont les mêmes après une
telle rotation. Montrer que le tenseur de conductivité thermique symétrique κ
s’écrit en composantes comme,

κ =

κ⊥ 0 0
0 κ⊥ 0
0 0 κ‖


où κ‖ est la conductivité thermique le long de l’axe de rotation vertical et κ⊥
est la conductivité thermique dans le plan de rotation horizontal.

11.14 Solution

Le tenseur symétrique de conductivité thermique κ s’écrit en composantes
comme,

κ =

κ11 κ12 κ13
κ12 κ22 κ23
κ13 κ23 κ33


La matrice de rotation Rπ

6
qui décrit une rotation d’angle π/6 dans le plan ho-

rizontal autour de l’axe vertical qui laisse le tenseur de conductivité thermique
invariant, et son inverse R−1π

6
, s’écrivent,

Rπ
6

=
1

2

 1 −
√

3 0√
3 1 0

0 0 1

 et R−1π
6

= R− π
6

=
1

2

 1
√

3 0

−
√

3 1 0
0 0 1


Etant donné que les propriétés physiques du cristal sont invariantes par la
rotation Rπ

6
, on effectue une rotation d’angle π/6 de la loi de Fourier (11.26),

Rπ
6
· jQ = −Rπ

6
· κ ·∇T = −Rπ

6
· κ · R− π

6
· Rπ

6
·∇T

où R− π
6
· Rπ

6
= 1. Comme la loi de Fourier (11.26) est invariante par cette

rotation,

Rπ
6
· jQ = jQ et Rπ

6
·∇T = ∇T

et

Rπ
6
· κ · R− π

6
= κ ou Rπ

6
· κ = κ · Rπ

6

qui peut être écrit en composantes comme, 1 −
√

3 0√
3 1 0

0 0 1

κ11 κ12 κ13
κ12 κ22 κ23
κ13 κ23 κ33

 =

κ11 κ12 κ13
κ12 κ22 κ23
κ13 κ23 κ33

 1 −
√

3 0√
3 1 0

0 0 1


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Les solutions de ce système matriciel sont,

κ12 = κ13 = κ23 = 0 et κ11 = κ22

Avec les identifications,

κ‖ = κ33 et κ⊥ = κ11 = κ22

le tenseur de conductivité thermique κ se réduit à,

κ =

κ⊥ 0 0
0 κ⊥ 0
0 0 κ‖



11.15 Effet Ettingshausen planaire

Dans ce chapitre, on a examiné plusieurs exemples de densité de courant uni-
dimensionnel qui induisent le gradient d’une grandeur intensive dans une di-
rection perpendiculaire. Ces effets sont appelés du nom des physiciens qui les
ont découverts : Righi-Leduc (11.29), Hall (11.75), Nernst (11.85), Ettingshau-
sen (11.80). Le dernier se réfère à un gradient de température induit par une
densité de courant électrique orthogonale. Cet effet a été récemment mis en
évidence dans un cristal constitué de deux types de porteurs de charges élec-
triques qui présente une forte anisotropie cristalline dans le plan où ont lieu les
transport de chaleur et de charge électrique. Aucun champ d’induction magné-
tique orthogonal n’a besoin d’être appliqué orthogonal à ce plan pour observer
cet effet.

(8)

Le matériau a deux types de porteurs de charges électriques, les électrons
(e) et les trous (h). On suppose qu’il n’y a pas de « réaction chimique » entre les
deux. Les propriétés thermoélectriques sont isotropes, c’est-à-dire qu’elles sont
identiques dans toutes les directions. Par conséquent, les tenseurs de Seebeck
pour les électrons et les trous s’écrivent,

εe =

(
εe 0
0 εe

)
et εh =

(
εh 0
0 εh

)
Toutefois, les conductivités varient beaucoup entre deux directions orthogo-
nales. Ainsi, les tenseurs de conductivité s’écrivent,

σe =

(
σe,aa 0

0 σe,bb

)
et σh =

(
σh,aa 0

0 σh,bb

)
où les indices a et b dénotent les axes a et b, qui sont des axes cristallins
orthogonaux.

(8)
C. Zhou, S. Birner, Y. Tang, K. Heinselman, M. Grayson, Driving perpendicular Heat
Flow : (p × n)-Type Transverse Thermoelectrics for Microscale and Cryogenic Peltier
Cooling, Phys. Rev. Lett. 110, 227701 (2013).
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On considère un transport de charges électriques le long de l’axe x qui fait
un angle θ avec l’axe a. Monter que la densité de courant électrique jq induit une
densité de courant de chaleur jQ le long de l’axe y. C’est l’effet Ettingshausen
planaire. Il peut être établi en utilisant les instructions suivantes :

1) Montrer que le tenseur de Seebeck de ce cristal s’écrit,
(9)

ε = (σe + σh)
−1 · (σe · εe + σh · εh)

2) Montrer que le tenseur de Seebeck pour le cristal est diagonal et s’écrit,

ε =

(
εaa 0
0 εbb

)
où la composante diagonale εaa est différente de εbb en général. La matrice
est donnée ici pour un repère orienté le long des axes cristallins a et b.

3) Ecrire les composantes du tenseur de Seebeck en termes des coordonnées
spatiales (x, y),

ε =

(
εxx εxy
εyx εyy

)
en termes des composantes diagonales εaa et εbb du tenseur de Seebeck
représenté en termes des coordonnées spatiales (a, b).

4) La densité de courant de chaleur jQ est liée à la densité de courant élec-
trique jq par,

jQ = Π · jq
qui est une version locale de l’effet Peltier (11.108). Le tenseur de Peltier
est lié au tenseur de Seebeck par,

Π = T ε

En particulier, pour une densité de courant de électrique jq = jq,x x̂, où x̂
est un vecteur unitaire le long de l’axe x, montrer que la composante jQ,y
le long de l’axe y de la densité de courant de chaleur jQ = jQ,x x̂+ jQ,y ŷ,
où ŷ est le vecteur unitaire le long de l’axe y, s’écrit,

jQ,y =
1

2
T (εaa − εbb) sin (2 θ) jq,x

Ainsi, l’effet Ettingshausen planaire est maximal pour un angle θ = π/4.

11.15 Solution

1) Les équations de transport de la charge électrique pour les électrons et les
trous sont données par,

jq,e = −σe · εe ·∇T − σe ·∇ϕ

jq,h = −σh · εh ·∇T − σh ·∇ϕ

(9)
S. D. Brechet et J.-Ph. Ansermet, Heat-driven spin currents on large scales., physica
status solidi (RRL) 5, (12) 423-425 (2011).
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L’effet Seebeck est observé lorsque la densité de courant électrique s’annule,
i.e. jq = jq,e + jq,h = 0. Ainsi,

jq = jq,e + jq,h = − (σe · εe + σh · εh) ·∇T − (σe + σh) ·∇ϕ = 0

D’après l’effet Seebeck (11.83),

∇ϕ = − (σe + σh)
−1 · (σe · εe + σh · εh) ·∇T = − ε ·∇T

Ainsi, le tenseur de Seebeck est donné par,

ε = (σe + σh)
−1 · (σe · εe + σh · εh)

2) Le tenseur de Seebeck s’écrit en composantes,

ε =


σe,aa εe + σh,aa εh
σe,aa + σh,aa

0

0
σe,bb εe + σh,bb εh
σe,bb + σh,bb


Par conséquent, les composantes diagonales sont données par,

εaa =
σe,aa εe + σh,aa εh
σe,aa + σh,aa

et εbb =
σe,bb εe + σh,bb εh
σe,bb + σh,bb

3) La matrice de rotation Rθ qui décrit la rotation d’un angle θ dans le plan
qui amène les axes cristallins a et b sur les x et y respectivement, et son
inverse R− θ, s’écrivent,

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
et R− θ =

(
cos θ sin θ
− sin θ cos θ

)
où R− θ · Rθ = 1. Les coordonnées du gradient de potentiel électrique ∇ϕ
dans la base (x, y) sont liées aux coordonnées dans la base (a, b) par,(

∂x ϕ
∂y ϕ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
∂a ϕ
∂b ϕ

)
Les coordonnées du gradient de température ∇T dans la base (x, y) sont
liées aux coordonnées dans la base (a, b) par,(

∂x T
∂y T

)
=

(
cos θ − sin θ
sin θ cos θ

)(
∂a T
∂b T

)
Ainsi, compte tenu de l’effet Seebeck (11.83), les coordonnées du tenseur
de Seebeck dans la base (x, y) sont liées aux coordonnées dans la base (a, b)
par, (

εxx εxy
εyx εyy

)
=

(
cos θ − sin θ
sin θ cos θ

)(
εaa 0
0 εbb

)(
cos θ sin θ
− sin θ cos θ

)
ce qui implique que,(

εxx εxy
εyx εyy

)
=

(
εaa cos2 θ + εbb sin2 θ (εaa − εbb) sin θ cos θ
(εaa − εbb) sin θ cos θ εaa sin2 θ + εbb cos2 θ

)
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4) L’effet Peltier est donné par,

jQ = T ε · jq

Pour une densité de courant de chaleur jQ = jQ,x x̂+ jQ,y ŷ et une densité
de courant électrique jq = jq,x x̂, cet effet s’écrit en composantes comme,(

jQ,x
jQ,y

)
= T

(
εaa cos2 θ + εbb sin2 θ (εaa − εbb) sin θ cos θ
(εaa − εbb) sin θ cos θ εaa sin2 θ + εbb cos2 θ

)(
jq,x
0

)
Ainsi, l’effet Ettingshausen planaire s’écrit,

jQ,y =
1

2
T (εaa − εbb) sin (2 θ) jq,x

compte tenu de l’identité trigonométrique sin (2 θ) = 2 sin θ cos θ.

11.16 Structure de Turing

Un milieu biologique est constitué de deux substances 1 et 2 de densités n1 et
n2. Ce milieu génère ces deux substances à l’aide de processus caractérisés par
des densités de source π1 (n1, n2) et π2 (n1, n2). Les substances 1 et 2 peuvent
diffuser dans le milieu. Les densités de courant de matière j1 et j2 satisfont la
loi de Fick (11.51),

j1 = −D1 ∇n1 et j2 = −D2 ∇n2

où D1 > 0 et D2 > 0 sont les constantes de diffusion homogènes des substances
1 et 2. Le milieu a un volume fixe, ce qui signifie que son taux d’expansion
s’annule, i.e. ∇ · v = 0. Ainsi, les équations de continuité pour les substances 1
et 2 s’écrivent,

ṅ1 + ∇ · j1 = π1 (n1, n2) et ṅ2 + ∇ · j2 = π2 (n1, n2)

A l’équilibre, on suppose que le système est homogène et caractérisé par les
densités n01 et n02 des substances 1 et 2. Dans le voisinage de l’équilibre,
les densités de source de matière π1 (n1, n2) et π2 (n1, n2) s’écrivent au premier
ordre en termes des perturbations de densité ∆n1 = n1− n01 et ∆n2 = n2− n02
par,

π1 (n1, n2) = Ω11 ∆n1 + Ω12 ∆n2

π2 (n1, n2) = Ω21 ∆n1 + Ω22 ∆n2

où les coefficients Ω11, Ω12, Ω21, Ω22 s’écrivent,

Ω11 =
∂π1
∂n1

Ω12 =
∂π1
∂n2

Ω21 =
∂π2
∂n1

Ω22 =
∂π2
∂n2
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Pour rester dans le cadre de la phénoménologie des processus irréversibles, on
fait ici l’hypothèse que les processus qui génèrent les substances 1 et 2 sont les

deux réactions chimiques 1
a−→ 2 et 2

b−→ 1 décrites par les coefficients
stœchiométriques νa1 = − 1, νa2 = 1, νb1 = 1, νb2 = − 1 et les densités de
taux de réaction ωa et ωb. On suppose que la température T et les potentiels
chimiques µ1 et µ2 sont homogènes, i.e. ∇T = 0 et ∇µ1 = ∇µ2 = 0. Analyser
l’évolution des perturbations de densité ∆n1 et ∆n2 en utilisant les instructions
suivantes :

1) Exprimer les coefficients Ω11, Ω12, Ω21, Ω22 en termes de la densité totale
n = n1 + n2, des perturbations de densité ∆n1 et ∆n2, de la température
T et du scalaire W ≥ 0, qui est une combinaison linéaire des éléments de
matrice d’Onsager Laa, Lab, Lba et Lbb. Commencer en utilisant le deuxième
principe, i.e. πs ≥ 0, et la relation (8.68) pour un mélange de gaz parfaits.

2) Déterminer les équations d’évolution temporelles des perturbations de den-
sité ∆n1 et ∆n2.

3) Montrer que sous les conditions imposées en 1) la relation,(
∆n1 (t)
∆n2 (t)

)
= eλ t cos (k · r + ϕ)

(
∆n1 (0)
∆n2 (0)

)
est une solution des équations d’évolution temporelle couplées où λ < 0.

11.16 Solution

1) A l’aide de la définition (10.25) pour les densités de source de matière
π1 (n1, n2) et π2 (n1, n2) et des coefficients stœchiométriques νa1 = − 1,
νa2 = 1, νb1 = 1, νb2 = − 1, on peut écrire que,

π1 (n1, n2) = Ω11 ∆n1 + Ω12 ∆n2 = νa1 ωa + νb1 ωb = − (ωa − ωb)

π2 (n1, n2) = Ω21 ∆n1 + Ω22 ∆n2 = νa2 ωa + νb2 ωb = ωa − ωb

A l’aide de la définition (8.18) pour les affinités chimiques Aa et Ab,

Aa = −µ1 νa1 − µ2 νa2 = µ1 − µ2

Ab = −µ1 νb1 − µ2 νb2 = − (µ1 − µ2) = −Aa

Comme il n’y a pas de dilatation du système, i.e. ∇ · v = 0, les relations
phénoménologiques linéaires (11.6) se réduisent à,

ωa = LaaAa + LabAb = (Laa − Lab)Aa = (Laa − Lab) (µ1 − µ2)

ωb = LbaAa + LbbAb = (Lba − Lbb)Aa = (Lba − Lbb) (µ1 − µ2)

Etant donné que la température et les potentiels chimiques sont homogènes,
i.e. ∇T = 0 et ∇µ1 = ∇µ2 = 0, le deuxième principe (10.88) se réduit à,

πs =
1

T
(ωaAa + ωbAb) =

Aa
T

(ωa − ωb)

=
A2
a

T
(Laa − Lab − Lba + Lbb) =

W A2
a

T
≥ 0
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ce qui implique que W ≥ 0 vu que T > 0 et A2
a ≥ 0. Ainsi,

Ω11 ∆n1 + Ω12 ∆n2 = − (ωa − ωb) = −W (µ1 − µ2)

Ω21 ∆n1 + Ω22 ∆n2 = ωa − ωb = W (µ1 − µ2)

A présent, les potentiels chimiques µ1 et µ2 doivent être exprimés en termes
des concentrations n1/n et n2/n des substances 1 et 2 à l’aide de la rela-
tion (8.68) pour un mélange de gaz parfaits,

µ1 (T, n1, n) = µ1 (T, n1) +RT ln
(n1
n

)
= µ1 (T, n1) +RT ln

(
n01 + ∆n1

n

)
µ2 (T, n2, n) = µ2 (T, n2) +RT ln

(n2
n

)
= µ2 (T, n2) +RT ln

(
n02 + ∆n2

n

)
qui peut être mis sous la forme,

µ1 (T, n1, n) = µ0
1 (T, n1, n) +RT ln

(
1 +

∆n1
n

)
µ2 (T, n2, n) = µ0

2 (T, n1, n) +RT ln

(
1 +

∆n2
n

)
où les potentiels chimiques sont à l’équilibre,

µ0
1 (T, n1, n) = µ1 (T, n1) +RT ln

(n01
n

)
µ0
2 (T, n2, n) = µ2 (T, n2) +RT ln

(n02
n

)
A l’équilibre, les potentiels chimiques sont égaux,

µ0
1 (T, n1, n) = µ0

2 (T, n2, n) ≡ µ0 (T, n1, n2)

Ainsi, pour de faibles perturbations de densité, i.e. ∆n1 � 1 et ∆n2 � 1,
les potentiels chimiques deviennent,

µ1 (T, n1, n) = µ0 (T, n1, n2) +RT
∆n1
n

µ2 (T, n1, n) = µ0 (T, n1, n2) +RT
∆n2
n

Par conséquent,

Ω11 ∆n1 + Ω12 ∆n2 = −W (µ1 − µ2) = − RTW

n
(∆n1 − ∆n2)

Ω21 ∆n1 + Ω22 ∆n2 = W (µ1 − µ2) =
RTW

n
(∆n1 − ∆n2)

ce qui implique que les coefficients sont donnés par,

Ω11 = Ω22 = − RTW

n
≤ 0 et Ω12 = Ω21 =

RTW

n
≥ 0
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2) A l’aide des densités de courant de matière j1 et j2, les équations de conti-
nuité pour la matière peuvent être mises sous la forme,

ṅ1 = D1 ∇2 n1 + π1 (n1, n2) et ṅ2 = D2 ∇2 n2 + π2 (n1, n2)

où le laplacien ∇2 = ∇ ·∇ est un opérateur scalaire. En introduisant le
scalaire Ω ≡ Ω12 = Ω21 = −Ω11 = −Ω22 ≥ 0 et en tenant compte des
relations pour les densités de source de matière π1 (n1, n2) et π2 (n1, n2),
les équations de continuité pour la matière deviennent,

ṅ1 = D1 ∇2 n1 − Ω ∆n1 + Ω ∆n2

ṅ2 = D2 ∇2 n2 + Ω ∆n1 − Ω ∆n2

Etant donné que ∆n1 = n1 − n01 et ∆n2 = n2 − n02 où n01 et n02 sont
des constantes,

ṅ1 = ∆ṅ1 ṅ2 = ∆ṅ2 ∇2 n1 = ∇2 (∆n1) ∇2 n2 = ∇2 (∆n2)

Ainsi, les équations d’évolutions temporelles couplées pour les perturbations
de densité ∆n1 et ∆n2 sont données par,

∆ṅ1 = D1 ∇2 (∆n1)− Ω ∆n1 + Ω ∆n2

∆ṅ2 = D2 ∇2 (∆n2) + Ω ∆n1 − Ω ∆n2

3) Les équations d’évolution temporelle couplées peuvent être mises sous la
forme d’un système matriciel,(

∆ṅ1
∆ṅ2

)
=

(
−Ω +D1 ∇2 Ω

Ω −Ω +D2 ∇2

)(
∆n1
∆n2

)
En substituant la solution donnée dans les équations temporelles couplées
et à l’aide des relations,

∆ṅ1 = λ∆n1 et ∇2 (∆n1) = −k2 ∆n1

∆ṅ2 = λ∆n2 et ∇2 (∆n2) = −k2 ∆n2

le système matriciel est alors mis sous la forme,(
−Ω− D1 k

2 − λ Ω

Ω −Ω− D2 k
2 − λ

)(
∆n1
∆n2

)
= 0

Pour des solutions non-triviales, le déterminant de cette matrice s’annule,(
Ω +D1 k

2 + λ
) (

Ω +D2 k
2 + λ

)
− Ω2 = 0

ce qui peut être écrit comme,

λ2 + 2ω λ+ α = 0
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où,

ω ≡ 1

2

(
2 Ω + (D1 +D2)k2

)
≥ 0

α ≡
(
Ω +D1 k

2
) (

Ω +D2 k
2
)
− Ω2 ≥ 0

ce qui implique que ω2− α ≥ 0. Les solutions de cette équation quadratique
en λ sont,

λ1 = −ω +
√
ω2 − α

λ2 = −ω −
√
ω2 − α

Ces solutions sont appelées les exposants de Lyapunov du système. Sous
l’hypothèse d’un système fermé au sein duquel des réactions ont lieu, qui
transforment la substance 1 en substance 2 et vice versa, les exposants de
Lyapunov sont donc négatifs, i.e. λ1 < 0 et λ2 < 0, ce qui correspond à des
solutions stables. Pour la formation d’instabilités, où les perturbations de
densités croissent exponentiellement, au moins un des exposants de Lyapu-
nov doit être positif, i.e. λ1 > 0 ou λ2 > 0. Ainsi, dans un système fermé,
les perturbations de densité ne peuvent pas crôıtre. Afin de permettre la
formation et la croissance d’instabilités, qui peuvent donner lieu à la for-
mation de structures appelées les structures de Turing , il doit y avoir
une source des substances 1 et 2 qui se situe dans l’environnement.

(10)

11.17 Ultramicroélectrodes

En électrochimie, le courant électrique qu’on observe est dû essentiellement à
la diffusion des ions dans l’électrolyte parce que le champ électrique est écranté
par l’électrolyte, sauf au voisinage immédiat des électrodes. Il a été constaté
que ces courants conductifs peuvent être évités en utilisant de très petites élec-
trodes appelées des ultramicroélectrodes.

(11) (12) (13)

On décrit le fonctionne-
ment de ces microélectrodes dans le référentiel de l’électrolyte, i.e. v = 0. Afin
de comprendre comment les densités de courant conductif varient avec la taille
de l’électrode, on considère une électrode sphérique et une densité de courant
conductif de matière de symétrie sphérique, jA = jAr r̂ ≡ jr r̂. Montrer que
lorsque le système atteint un état stationnaire, la densité de courant conductif
de matière n’est pas nul. L’analyse du comportement transitoire montrerait

(10)
R. Phillips, Physical Biology of the Cell, Taylor & Francis, 2nd edition (2012).

(11)
K. Aoki, K. Akimoto, K. Tokuda, H. Matsuda, J. Osteryoung, Linear sweep voltammetry
at very small stationary disk electrodes, J. Electroanal. Chem. 171, 219-230 (1984).

(12)
M. Fleschmann, S. Pons, The behavior of microdisk and microring electrodes, J. Elec-
troanal. Chem. 222, 107-115 (1987).

(13)
A. M. Bond, K. B. Oldham, C. G. Zoski, Steady-state voltammetry, Analytica Chimica
Acta, 216, 177-230 (1989).
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que l’état stationnaire est atteint plus rapidement lorsque l’électrode est plus
petite.

(14)

En coordonnées sphériques (r, θ, φ), compte tenu de la symétrie sphé-
rique de la densité de courant de matière, i.e. ∂/∂θ = 0 et ∂/∂φ = 0, l’équation
de diffusion de la matière (11.54) pour un soluté de concentration c (r, t) s’écrit,

∂c (r, t)

∂t
= D

(
∂2c (r, t)

∂r2
+

2

r

∂c (r, t)

∂r

)
Les conditions au bord sont,

c (r > r0, t = 0) = c∗ et lim
r→∞

c (r, t) = c∗

où c∗ est la concentration très loin de l’électrode et r0 est le rayon de électrode.
D’après la relation (11.51), la densité scalaire de courant conductif de matière
jr qui caractérise cette électrode est,

jr (r0, t) = −D ∂c (r, t)

∂r

∣∣∣∣
r=r0

Etablir les résultats suivants :

1) L’équation de diffusion exprimée en termes de la fonction w (r, t) = r c (r, t)
a la structure d’une équation de diffusion où la coordonnée sphérique r jour
un rôle analogue à une coordonnée cartésienne.

2) L’équation de diffusion,

∂w (r, t)

∂t
= D

∂2w (r, t)

∂r2

admet comme solution,

w (r, t) = B

∫ ν

ν0

exp
(
− ν′ 2

)
dν′ où ν =

r

2
√
Dt

et B est une grandeur à déterminer. D’abord, écrire w (r, t) = f (η) où la
variable η est une fonction sans dimension de r et t qui s’écrit,

η (r, t) =
r2

Dt

3) Dans la limite où le rayon de l’électrode est négligeable, i.e. r = 0, la densité
scalaire de courant conductif de matière s’écrit,

jr (0, t) =
B

8
√
Dt3/2

4) Après un comportement transitoire, la densité scalaire de courant conductif
de matière atteint une valeur stationnaire,

jr (r0,∞) = − D c∗

r0

(14)
J. Heinze, Ultramicroelectrodes in Electrochemistry, Angew. Chem. Int. Ed. Engl. 32,
1268-1288 (1993).
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11.17 Solution

1) Afin de montrer que la fonction w (r, t) = r c (r, t) satisfait une équation
de diffusion pour la variable spatiale r, on détermine les dérivées partielles
compte tenu du fait que les variables r et t sont indépendantes. A l’aide de
l’équation de diffusion pour la concentration de matière c (r, t), la dérivée
partielle par rapport au temps de w (r, t) peut être mise sous la forme,

∂w (r, t)

∂t
=
r ∂c (r, t)

∂t
= D

(
r
∂2c (r, t)

∂r2
+ 2

∂c (r, t)

∂r

)
Les dérivées partielles secondes sont données par,

∂2w (r, t)

∂r2
=

∂

∂r

(
∂

∂r
(r c (r, t))

)
=
∂c (r, t)

∂r
+

∂

∂r

(
r
∂c (r, t)

∂r

)
= r

∂2c (r, t)

∂r2
+ 2

∂c (r, t)

∂r

Ainsi,
∂w (r, t)

∂t
= D

∂2w (r, t)

∂r2

2) Les dérivées partielles de la fonction w (r, t) doivent être exprimées en
termes des dérivées partielles de la fonction f (η) où η (r, t) = r2/Dt.

(15)

Les dérivées partielles de la fonction η (r, t) = r2/Dt sont,

∂η

∂t
= − r2

Dt2
= − η

t
et

∂η

∂r
=

2r

Dt
=

2η

r

Etant donné que f (η) = w (r, t), les dérivées partielles premières de la fonc-
tion w (r, t) sont exprimées en termes de la dérivée première de la fonction
f (η) comme,

∂w

∂t
=
df

dη

∂η

∂t
= − r2

Dt2
df

dη
= − η

t

df

dη

∂w

∂r
=
df

dη

∂η

∂r
=

2r

Dt

df

dη
=

2η

r

df

dη

Les dérivées partielles secondes de la fonction w (r, t) sont exprimées en
termes de la dérivée seconde de la fonction f (η) comme,

∂2w

∂r2
=

∂

∂r

(
2 r

Dt

df

dη

)
=

2

Dt

df

dη
+

2r

Dt

d2f

dη2
∂η

∂r
=

2η

r2
df

dη
+

4η2

r2
d2f

dη2

Ainsi, l’équation de diffusion devient,

− η

t

df

dη
=

2Dη

r2
df

dη
+

4Dη2

r2
d2f

dη2

(15)
K. F. Riley, M. P. Hobson, S. J. Bence, Mathematical Methods for Physics and Enginee-
ring, Cambridge University Press, 3rd edition (2006), sect. 20.5.
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A l’aide de la définition de la fonction sans dimension η, cette équation
différentielle est mise sous la forme,

4η
d2f

dη2
+ (η + 2)

df

dη
= 0

A présent, on introduit une fonction g (η) définie comme la dérivée de f (η)
par rapport à η,

g (η) =
df

dη

Ainsi, l’équation différentielle devient,

4η
dg (η)

dη
+ (η + 2) g (η) = 0

qui peut être mise sous la forme,

dg (η)

g (η)
= −

(
1

4
+

1

2η

)
dη

En intégrant de η0 à η, on obtient,∫ g(η)

g0

dg′ (η′)

g′ (η′)
= −

∫ η

η0

(
1

4
+

1

2η′

)
dη′

où g0 = g (η0). La solution est,

ln

(
g (η)

g0

)
= − 1

2
ln

(
η

η0

)
− 1

4
(η − η0)

qui peut être mise sous la forme,

ln

(
g (η) η1/2

g0 η
1/2
0

)
= − 1

4
(η − η0)

et implique que,

g (η) =
A

η1/2
exp

(
− η

4

)
où la constante A = g0 η

1/2
0 exp (η0/4). En intégrant de η0 à η, on obtient,

f (η) =

∫ η

η0

g′ (η′) dη′ = A

∫ η

η0

1

η′ 1/2
exp

(
− η′

4

)
dη′

A l’aide du changement de variable,

ν =
η1/2

2
=

r

2
√
Dt

alors dν =
dη

4η1/2

et compte tenu de la définition h (ν) = f (η) = w (r, t), la solution devient,

w (r, t) = h (ν) = B

∫ ν

ν0

exp
(
− ν′ 2

)
dν′

où la constante B = 4A. Pour ν0 = 0, la solution est la fonction d’erreur
h (ν) = erf (ν) multipliée par une constante.
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3) La concentration de matière c (r, t) est donnée par,

c (r, t) =
w (r, t)

r
=
B

r

∫ ν

ν0

exp
(
− ν′ 2

)
dν′

où ν (r, t) et on choisit ν0 (r, t) = ν (r0, t). Ainsi, la densité scalaire de
courant conductif de matière à l’électrode de rayon r0 s’écrit,

jr (r0, t) = −D ∂c (r, t)

∂r

∣∣∣∣
r=r0

=
BD

r20

∫ ν

ν0

exp
(
− ν′ 2

)
dν′
∣∣∣∣
r=r0

− BD

r20
exp

(
− ν2

) ∂ν
∂r

∣∣∣∣
r=r0

où on a utilisé le fait que la borne supérieure d’intégration ν (r, t) est une
fonction de r. Dans cette relation, l’intégrale s’annule car ν évaluée en r0
est ν0, ce qui signifie que les bornes d’intégration inférieure et supérieure
sont égales. Compte tenu du fait que,

exp
(
− ν2

) ∂ν
∂r

∣∣∣∣
r=r0

= exp

(
− r2

4Dt

)
∂

∂r

(
r

2
√
Dt

)∣∣∣∣
r=r0

=
1

2
√
Dt

exp

(
− r20

4Dt

)
on obtient,

jr (r0, t) = − B

2r20

√
D

t
exp

(
− r20

4Dt

)
Dans la limite où le rayon de l’électrode est négligeable, i.e. r0 = 0, la
densité scalaire de courant conductif de matière est donnée par,

jr (0, t) = lim
r0→0

jr (r0, t) = lim
r0→0

(
− B

2r20

√
D

t

(
1− r20

4Dt

))
=

B

8
√
Dt3/2

4) L’état stationnaire est atteint dans la limite où t → ∞. Dans la limite
stationnaire,

lim
t→∞

ν (r0, t) = lim
t→∞

r0

2
√
Dt

= 0

et initialement,

ν0 = lim
t→0

ν (r0, t) = lim
t→0

r0

2
√
Dt

=∞

Ainsi, dans l’état stationnaire, l’expression générale pour la densité scalaire
de courant conductif de matière obtenue en 3) se réduit à,

jr (r0,∞) = −D ∂c (r,∞)

∂r

∣∣∣∣
r=r0

= − BD

r20

∫ ∞
0

exp
(
− ν2

)
dν
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La fonction d’erreur erf (x) est définie comme,

erf (x) =
2√
π

∫ x

0

exp
(
− ν2

)
dν

et erf (∞) = 1. Ainsi, la densité scalaire de courant conductif de matière
est mise sous la forme,

jr (r0,∞) = −
√
πBD

2 r20
erf (∞) = −

√
πBD

2 r20
= − D c∗

r0

où

B =
2 r0 c

∗
√
π

11.18 Effusivité

Deux longs blocs constitués de matériaux homogènes différents sont à des tem-
pérature T1 et T2 lorsqu’ils ont mis en contact l’un avec l’autre. L’interface
atteint rapidement une température T0 qui s’écrit,

T0 =
E1 T1 + E2 T2
E1 + E2

où E1 =
√
κ1 c1 > 0 et E2 =

√
κ2 c2 > 0 sont appelées les effusivitiés des

matériaux 1 et 2, κ1 et κ2 sont les conductivités thermiques et c1 et c2 sont
les chaleurs spécifiques par unité de volume des deux matériaux. Si le matériau
1 est très chaud, mais qu’il a une conductivité thermique κ1 et une chaleur
spécifique par unité de volume c1 faibles, et qu’au contraire le matériau 2 a
une conductivité thermique κ2 et une chaleur spécifique par unité de volume
c2 importantes, alors la température de l’interface T0 sera presque T2, i.e. le
matériau 2 ne « ressent pas la chaleur » du matériau 1. Etablir ce résultat en
utilisant les instructions suivantes :

1) On considère un axe x normal à interface avec x = 0 à l’interface, x < 0
dans le matériau 1 et x > 0 dans le matériau 2. Soient T1 (x, t) et T2 (x, t)
les solutions de l’équation de diffusion de la chaleur (11.35) dans les maté-
riaux 1 et 2. Déterminer les conditions au bord sur T1 (x, t) et T2 (x, t) à
l’interface.

2) En utilisant une démarche qui est analogue à celle présentée en sect.11.17,
montrer que les solutions générales pour les profils de température T1 (x, t)
et T2 (x, t) s’écrivent,

T1 (x, t) = C1 +D1 erf

(
x

2
√
λ1t

)
où x ≤ 0

T2 (x, t) = C2 +D2 erf

(
x

2
√
λ2t

)
où x ≥ 0
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où erf (ν) est la fonction d’erreur définie comme,

erf (ν) =
2√
π

∫ ν

0

exp
(
− s2

)
ds

et C1, C2, D1 et D2 sont des coefficients constants.

3) Utiliser les conditions au bord pour déterminer ces coefficients en termes
des températures T0, T1 et T2. Montrer que la température T0 est donnée
par la relation écrite en termes des effusivités juste après que les deux blocs
aient atteint une température commune à l’interface.

11.18 Solution

1) A l’interface, une condition au bord est que les températures des deux
matériaux sont égales,

T1 (0, t) = T2 (0, t)

L’autre condition au bord est que les densités de courant de chaleur jQ1
=

−κ1 ∂x T1 x̂ et jQ2
= −κ2 ∂x T2 x̂ sont aussi égales,

κ1
∂T1 (0, t)

∂x
= κ2

∂T2 (0, t)

∂x

où x̂ est le vecteur unitaire le long de l’axe x.

2) L’équation de diffusion de la chaleur dans le bloc 1 s’écrit,

∂T1 (x, t)

∂t
= λ1

∂2T1 (x, t)

∂x2

Les dérivées partielles de la fonction T1 (x, t) doivent être exprimées en
termes des dérivées partielles de la fonction f1 (η1) où η1 (x, t) = x2/λ1t.

(16)

Les dérivées partielles de la fonction η1 (x, t) = x2/λ1t sont,

∂η1
∂t

= − x2

λ1t2
= − η1

t
et

∂η1
∂x

=
2x

λ1t
=

2 η1
x

Etant donné que f1 (η1) = T1 (x, t), les dérivées partielles premières de la
fonction T1 (x, t) sont exprimées en termes des dérivées premières de la
fonction f1 (η1) comme,

∂T1
∂t

=
df1
dη1

∂η1
∂t

= − x2

λ1t2
df1
dη1

= − η1
t

df1
dη1

∂T1
∂x

=
df1
dη1

∂η1
∂x

=
2x

λ1t

df1
dη1

=
2 η1
x

df1
dη1

(16)
K. F. Riley, M. P. Hobson, S. J. Bence, Mathematical Methods for Physics and Enginee-
ring, Cambridge University Press, 3rd edition (2006), sect. 20.5.
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Les dérivées partielles secondes de la fonction T1 (x, t) sont exprimées en
termes des dérivées secondes de f1 (η1) comme,

∂2T1
∂x2

=
∂

∂x

(
2x

λ1t

df1
dη1

)
=

2

λ1t

df1
dη1

+
2x

λ1t

d2f1
dη21

∂η1
∂x

=
2 η1
x2

df1
dη1

+
4 η21
x2

d2f1
dη21

Ainsi, l’équation de la diffusion de la chaleur devient,

− η1
t

df1
dη1

=
2λ1 η1
x2

df1
dη1

+
4λ1 η

2
1

x2
d2f1
dη21

A l’aide de la définition de la fonction sans dimension η1, cette équation
différentielle est mise sous la forme,

4 η1
d2f1
dη21

+ (η1 + 2)
df1
dη1

= 0

A présent, on introduit une fonction g1 (η1) définie comme la dérivée de
f1 (η1) par rapport à η1,

g1 (η1) =
df1
dη1

Ainsi, l’équation différentielle devient,

4 η1
dg1 (η1)

dη1
+ (η1 + 2) g1 (η1) = 0

et peut être mise sous la forme,

dg1 (η1)

g1 (η1)
= −

(
1

4
+

1

2η1

)
dη1

En intégrant de η0 à η1, on obtient,∫ g1(η1)

g0

dg′1 (η′1)

g′1 (η′1)
= −

∫ η1

η0

(
1

4
+

1

2η′1

)
dη′1

où g0 = g1 (η0). La solution est,

ln

(
g1 (η1)

g0

)
= − 1

2
ln

(
η1
η0

)
− 1

4
(η1 − η0)

qui est mise sous la forme,

ln

(
g1 (η1) η

1/2
1

g0 η
1/2
0

)
= − 1

4
(η1 − η0)

ce qui implique que,

g1 (η1) =
A1

η1/2
exp

(
− η1

4

)
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où la constante A1 = g0 η
1/2
0 exp (η0/4). En intégrant de η0 à η1 on obtient,

f1 (η1) =

∫ η1

η0

g′1 (η′1) dη′1 = A1

∫ η1

η0

1

η
′ 1/2
1

exp

(
− η′1

4

)
dη′1

A l’aide du changement de variable,

ν1 =
η
1/2
1

2
=

x

2
√
λ1t

alors dν1 =
dη1

4η
1/2
1

et compte tenu de la définition h1 (ν1) = f1 (η1), cette solution devient,

h1 (ν1) = B1

∫ ν1

ν0

exp
(
− ν′ 21

)
dν′1

où la constante B1 = 4A1, ce qui peut être exprimé comme,

h1 (ν1) = C1 +B1

∫ ν1

0

exp
(
− ν′ 21

)
dν′1

où la constante C1 est donnée par,

C1 = −
∫ ν0

0

exp
(
− ν′ 21

)
dν′1

La fonction d’erreur erf (ν), définie comme,

erf (ν) =
2√
π

∫ ν

0

exp
(
− s2

)
ds

est une fonction impaire, i.e. erf (− ν) = − erf (ν) telle que erf (0) = 0 et
erf (∞) = 1. La dérivée de la fonction d’erreur erf (ν) est donnée par,

d erf (ν)

dν
=

2√
π

exp
(
− ν2

)
Ainsi, à l’aide de la fonction d’erreur, on obtient,

h1 (ν1) = C1 +D1 erf (ν1)

où D1 = (
√
π/2)B1. Etant donné que h1 (ν1) = T1 (x, t) et ν1 = x/2

√
λ1t,

on obtient,

T1 (x, t) = C1 +D1 erf

(
x

2
√
λ1t

)
où x ≤ 0

De manière similaire, on obtient le profil de température dans le bloc 2,

T2 (x, t) = C2 +D2 erf

(
x

2
√
λ2t

)
où x ≥ 0
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3) A l’interface, i.e. x = 0, la première condition au bord, T1 (0, t) = T2 (0, t) =
T0, est satisfait si,

C1 = C2 = T0

Les blocs sont suffisamment longs pour que les températures à l’extrémité
de chaque bloc soit en tout temps égales aux températures initiales. Ainsi,

T1 = T1 (−∞, t) = T0 +D1 erf (−∞) = T0 − D1

T2 = T2 (∞, t) = T0 +D2 erf (∞) = T0 +D2

Par conséquent, les profils de températures s’expriment comme,

T1 (x, t) = T0 + (T0 − T1) erf

(
x

2
√
λ1t

)
et x ≤ 0

T2 (x, t) = T0 + (T2 − T0) erf

(
x

2
√
λ2t

)
et x ≥ 0

Les dérivées spatiales des profils de température sont données par,

∂T1 (0, t)

∂x
= (T0 − T1)

d

dν

(
erf (ν)

)∣∣∣∣
ν=0

∂

∂x

(
x

2
√
λ1t

)∣∣∣∣
x=0

=
T0 − T1√
π λ1t

∂T2 (0, t)

∂x
= (T2 − T0)

d

dν

(
erf (ν)

)∣∣∣
ν=0

∂

∂x

(
x

2
√
λ2t

)∣∣∣∣
x=0

=
T2 − T0√
π λ2t

La seconde condition au bord, i.e. κ1 ∂x T1 (0, t) = κ2 ∂x T2 (0, t), est mise
sous la forme,

κ1
T0 − T1√
π λ1t

= κ2
T2 − T0√
π λ2t

Elle doit être satisfaite en tout temps t après que l’interface ait atteint une
température T0. D’après la relation (11.36),

λ1 =
κ1
c1

et λ2 =
κ2
c2

Ainsi,
T1 − T0
T0 − T2

=
κ2
κ1

√
λ1
λ2

=
κ2
κ1

√
κ1 c2
κ2 c1

=

√
κ2 c2
κ1 c1

=
E2

E1

ce qui implique que,

T0 =
E1 T1 + E2 T2
E1 + E2


