CHAPITRE 11

Thermodynamique des processus

irréversibles

11.1 Equation de diffusion de la chaleur
Montrer que le profil de température (11.44),

P C o (- )

ou T est la température et x la coordonnée spatiale, est une solution de ’équa-
tion de diffusion de la chaleur (11.37).

Solution

Pour montrer que le profil de température T (z,t) est une solution de I’équation
de diffusion de la chaleur (11.37), on doit calculer les dérivées partielles de cette
fonction. La dérivée partielle de la température T' par rapport au temps ¢ est
donnée par,
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La dérivée partielle premiere de la température T par rapport a la position x

s’écrit,
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ce qui implique que le produit de A\ et de la dérivée partielle seconde de la
température T par rapport a la position z est donnée par,
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Ainsi, on trouve que les expressions pour 9T/t et A 9*T/dx? sont identiques,
ce qui établit que le profil de température T (x,t) est une solution de I’équation
de diffusion de la chaleur (11.37).

11.2 Déphasage thermique

Un long fil de cuivre de diffusivité thermique X est chauffé a une extrémité par
une flamme passant périodiquement I'extrémité du fil alors que 'autre extré-
mité est située si loin de la lamme qu’elle reste a température ambiante Tjy. On
considere le fil comme un systéeme unidimensionnel avec une variation pério-
dique de température d’amplitude AT en z = 0. La température a U'extrémité
chaude s’écrit,

T(0,t) = To + AT cos (wt)

ou x est la coordonnée spatiale le long du fil. Des que le fil a atteint un régime
ou chaque point du fil a une variation périodique de température, montrer que
le profile de température est donné par,

T(x,t):T0+ATeXp(—§>cos(wt— g) ot d= %

L’oscillation de la température en position x est déphasée d’un angle — x/d par
rapport a l'oscillation en position x = 0. L’amplitude d’oscillation est atténue
d’un facteur exp (— z/d). Cet exercice est analogue a ’isolation thermique d’un
batiment soumis & une puisssance thermique périodique (sect. 3.10).

Solution

Pour montrer que le profil de température T (x,t) est une solution de ’équation
de diffusion de la chaleur (11.37), on doit calculer les dérivées partielles de cette
fonction. La dérivée partielle de la température T' par rapport au temps t est

donnée par,
88—7; = AT exp (— %) gt(cos (wt — 2))

= —wAT exp (— %) sin (wt— g)

BT (- Do e~ )

La dérivée partielle premiere de la température T' par rapport a la position x

s’écrit,
g—f = (,i(AT exp (— g) cos (wt - 2))
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ce qui implique que le produit de A et de la dérivée partielle seconde de la
température 1" par rapport a la position = est donnée par,

0T o (0T
/\8x2:)\8x<8x>

280 (e (- 5) (st 3) - sl )
e or () (b ml )

sin (wt_ g) — cos (wt— 2))

BT (oot )

Ainsi, on trouve que les expressions pour 7/0t et A9?T/0x* sont identiques,
ce qui établit que le profil de température T (x,t) est une solution de 1’équation
de diffusion de la chaleur (11.37).

11.3 Equation de la chaleur avec une source de chaleur

L’équation de diffusion de la chaleur a été établie en sect. 11.4.2, en absence de
terme de source. Montrer que pour un conducteur électrique en présence d’une
densité de courant électrique conductif j, = ¢eJ., I'équation de la chaleur

devient,
.9

HT= V2T Tj vr+le
C ocC

ou A est la diffusivité thermique, o est la conductivité électrique, 7 est le co-
efficient de Thomson du conducteur électrique et ¢ est la densité de chaleur
spécifique des électrons de conduction.

Solution

Dans le référentiel du conducteur électrique, i.e. v = 0, et en absence de
contrainte mécanique exercée sur le métal, i.e. m, = 0, ’équation de continuité
pour I'énergie interne (10.43) se réduit &,

du+V-j,=0

D’apres la relation (11.33),
8t u = c@t T

Compte tenu de la relation (11.102) et de la définition (11.104) du coefficient
Thomson, la relation (11.100) devient,

g

Vi ju=—-6VT+75, - VT -2 (11.1)
(o)
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Ainsi, on obtient I’équation de la chaleur,

.2
VT4l
ocC

T .
(T =AV*T— —j,

c
Elle contient un terme de source de chaleur, constitué d’un effet Thomson et
d’un effet Joule.

11.4 Effet Joule dans un fil

Etablir le profil de température d’un fil de longueur L et de rayon r parcouru par
un courant électrique I, de la gauche vers la droite, qui provoque I’échauffement
du fil. Le fil a une conductivité électrique o et une conductivité thermique k.
La chaleur se propage le long du fil jusqu’a son extrémité sans qu’il ait de
dissipation par sa surface latérale. L’effet Thomson est négligeable par rapport
a leffet Joule. Les extrémités gauche et droite sont maintenues a la température
constante Ty. Déterminer le profil de température T (z) le long du fil lorsqu’il
a atteint un état stationnaire.

Solution

Dans le référentiel du fil, i.e. v = 0, en absence de contrainte mécanique exercée
sur le métal, i.e. m, = 0, et dans un état stationnaire, i.e. @ = 0, ’équation de
continuité de ’énergie interne (10.43) impose la condition,

V.j,=0

En négligeant l'effet Thomson, i.e. Ve = 0, la relation (11.100) se réduit a,

HVQTZ—ﬁ
ag
ou
VT =02T& et jq:#zﬁ
Ainsi, )

La primitive de cette équation par rapport & x est,

12

mrigo

0, T = z+ A
ou A est une constante. La primitive de cette deuxieme équation par rapport
a x est alors,

1 I?

2
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ou B est une constante. Les constantes sont déterminées par les conditions aux
bord sur la température,

ce qui implique que,

1 I?L
A=— t B =T,
2 m2riko ¢ 0
Ainsi,
1 I?
T@ =3 it -2 +h

A Taide de la définition de la résistance électrique R (L) d’un fil de résistivité

p=1/c, de longueur L et de section d’aire A = 772,

L 1 L
R = _——= — —
PAT o2
le profil de température est donné par,

RI? 1

T(z)= kLA 5;6

(L— LL’)+T0

11 est maximal pour z = L/2 au milieu du fil.

11.5 Effet Thomson dans un fil

Etablir le profil de température d’un fil de longueur L et de rayon r parcouru
par un courant électrique I, de la gauche vers la droite, qui provoque 1’échauf-
fement du fil. Le fil a une conductivité électrique o et un coefficient Thomson
7. La chaleur se propage le long du fil jusqu’a son extrémité sans qu’il ait de
dissipation par sa surface latérale. L’effet Joule est négligeable par rapport a
leffet Thomson. L’extrémité gauche est maintenu a la température constante
Tpo. Déterminer le profil de température T' (x) le long du fil lorsqu’il a atteint un
état stationnaire. Donner aussi une expression de la température a I'extrémité
droite en termes du coefficient Thomson 7 et de la résistance électrique R du
fil.

Solution

Dans le référentiel du fil, i.e. v = 0, en absence de contrainte mécanique exercée
sur le métal, i.e. m, = 0, et dans un état stationnaire, i.e. @ = 0, ’équation de
continuité de ’énergie interne (10.43) impose la condition,

V.j,=0

Ainsi, la densité de puissance (11.103) se réduit a,

dy- (TVT— Jq) —0
ag
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Elle doit étre satisfaite pour toute densité de courant électrique conductif j,.
Ainsi,

Jq

oT

VT =
D’apres la relation (11.22), le gradient de température est donné par,

T (x) — Toﬁj
x

VT =

La densité de courant électrique conductif j, s’écrit,
. I
=—
Ja= 12
ou I est le courant électrique. Ainsi,

1

TrioT

A Dextrémité droite, i.e. x = L, la température est,

LI

T =To+ 557

La résistance électrique R (L) du fil de résistivité p = 1/0, de longueur L et de
section d’aire A = 772 est donnée par,
L 1L
RL)=p—=—-——
(L) =p A omr?
Par conséquent, la température a 'extrémité droite s’écrit,

R(L)I

T(L)=T0+

11.6 Echangeur de chaleur

Un échangeur de chaleur est constitué de deux tubes identiques séparés par
une paroi diatherme de section A, d’épaisseur h et de conductivité thermique
k. Dans les deux tubes, un liquide s’écoule aux vitesses uniformes vy = v; &
et vo9 = —vy @, avec v1 > 0 et vo > 0, ou & est le vecteur unitaire parallele
a I’écoulement du liquide dans le tube 1. La température T; du liquide dans
le tube 1 est plus grande que la température T, du liquide dans le tube 2, i.e.
Ty > Ty. Ainsi, il y a une densité de courant de chaleur j, = jg 9, avec jg > 0,
qui traverse la paroi séparant les tubes, ou ¢ est le vecteur unitaire orthogonal
a la paroi, orienté positivement du tube 1 au tube 2. Il n’y a pas de densité de
courant de liquide a travers la paroi, i.e. - = 0. La conductivité thermique est
considérée comme négligeable dans la direction de 1’écoulement du flux mais
elle est suffisamment importante dans la direction orthogonale pour garantir
une température homogene a travers toute section des deux tubes. On considere
que ’échangeur de chaleur a atteint un état stationnaire.
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1) Montrer que les profils de température dans les fluides sont donnés par les
équations différentielles,

R

oo,Th=———— (N1 — T
! h201v1( ! 2)
KR
0, Tho=———(T1 — T
2 h202v2( 1 2)

ou ¢ et ¢y sont les densités de chaleur spécifiques des liquides 1 et 2, x est
la conductivité thermique de la paroi diatherme.

2) Montrer que la densité de courant convectif de chaleur j = ¢; v1 T1 +cava T
est homogene.

3) Déterminer la différence de température AT (z) = T () — Ts (z).
4) Déterminer les profils de température Ty (z) et Ts (z).
5) Montrer que sur une distance suffisamment courte,

_ jHcua AT (0) kAT (0) .

T _
! (.’E) c1 V1 + co V2 h?cy v
Ty () = j— vy AT (0) kAT (0)
C1 V1 + Co Vo h2 Co Vg

Solution

1) D’apres la relation (10.101), vu qu’il n’y a pas de densité de courant de
liquide & travers la paroi, i.e. jo = 0, la densité de courant de chaleur j,
a travers la paroi est égale a la densité de courant d’énergie interne j,,o,
qui est I'opposé de la densité d’énergie interne j,; due a la conservation
d’énergie,

J Q= _jul =] u2
Etant donné que le flux de liquide est uniforme dans les deux tubes, il
n’y a pas de dilatation du fluide, i.e. V -v; = V - vy = 0. De plus, en
absence de contrainte mécanique exercée sur le liquide, i.e. m,, = my, =0,
les équations de continuité de ’énergie interne (10.43) pour le liquide dans
les tubes 1 et 2 peut étre écrit comme,

i =-V-j,=V jg
Uy =—=V -Juu=—-V-jg
Les densités d’énergie interne u; et uy sont écrites en termes des tempéra-
tures 17 et Tb des liquides comme,

U3 = C1 T1 et U = C2 TQ

Dans un état stationnaire, les dérivées temporelles des densités d’énergie
interne s’annulent, i.e. 9y u3 = 9y ug = 0. Ainsi, a ’aide de la relation (10.18)
pour les densités d’énergies internes u; et ug dans le cas particulier de flux
uniformes de liquide de vitesses v1 = v; & et vo = — vy &, on obtient,

ulzatU1+U1'VU1 :vlazulzclvlﬁmTl

’llgiatU2+’UQ'VU2:7U28mUQ:762U28mT2
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D’apres 1’équation (10.104) pour une section infinitésimale de de paroi de
volume dV, de section infinitésimale d’aire dA et d’épaisseur h, la puissance
thermique est donnée par,

Py=—dVV - jo=—hdAV -jg

Compte tenu de la loi de Fourier discrete (11.21), ot la longueur caracté-
ristique du transfert de chaleur £ est I’épaisseur h de la paroi, la divergence
de la densité de courant de chaleur j, s’écrit,

_ P __w
hdA =~ h2

Ainsi, les dérivées spatiales des températures sont données par,

V'jQ: (Th — Ty)

K

81T1: (T1*T2)

h2 C1 U1

8, Ty = (Ti — T»)

K
h2 Co U2
Compte tenu des dérivées spatiales des températures, on a,

0pj =0 (crviTi+c2v2Ta) = c1v1 0p Ty + 2120, To = 0

ce qui implique que la densité de courant de chaleur convective j est ho-
mogene.

La différence entre les dérivée spatiales des températures s’écrit,
1
0 (Th — Th) = — p (Th — Tz)

ou la longueur d’amortissement d est donnée par,

1 K K K (clv1—|—6202)

e + -
d h2civr h2cavy  h?Z\ clvicavs

Ainsi, la différence de température AT (x) = Ty (z) — T» (z) décroit expo-
nentiellement,

AT@)zATGD@m<f§)

La densité de courant de chaleur convective j peut étre écrite comme,

j=cio Ty (z)+cavy (T1 (z) — AT (0) exp (_ 2))

j=crv <T2 (z) + AT (0) exp (— Z)) +cav2 T ()

Ainsi, les profils de température sont donnés par,

160 = oy (1 auar 0o (-7))
B0 = e (1= e AT 0o (5)
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5) Pour un transfert de chaleur qui a lieu sur une distance suffisamment courte,
i.e. au premier ordre en x/d, les profils de température se réduisent a,

_ jHrcua AT (0) kAT (0) -

T _
! (x) C1 U1+ Cc2 V2 h2ci vy
T (2 :j—clleT(O) kAT (0) .
c1v1 + covg h? ¢ vo

11.7 Thermocouple

On considere un fil de métal A dont les extrémités sont reliées a deux fils d’un
métal B qui sont branchés aux bornes gauche « g » et droite « d » d’un volt-
metre (fig. 11.1). Une jonction entre les fils des métaux A et B est maintenue &
une température de référence fixe T; (glace fondue ou azote liquide) et 'autre
jonction est & une température variable T5 que 'on désire mesurer. Les deux
bornes du voltmetre sont a la méme température T pour que la mesure ne
dépende que des températures T3 et T aux extrémités du fil de métal A. Cette
mesure de température revient & mesurer l'effet Seebeck du métal A. On consi-
dere que les coefficients Seebeck ¢ 4 et e sont indépendants de la température.

Fig. 11.1 Un voltmetre détecte la chute de tension aux extrémités d’un circuit composé
d’un fil de métal B, d’un fil de métal A et d’un autre fil de métal B. Les jonctions entre
les fils sont & température 77 et To comme indiqué. Les deux bornes du voltmetre sont &
température T'.

1) Déterminer les différences de potentiel électrochimiques fi1 — fg, fi2 — [l
et fig — Ho.

2) Compte tenu du fait que le potentiel chimique e des électrons ne dépend
que de la température 7', en déduire la différence de potentiel électrostatique
Ap = pq — @g4 entre les bornes du voltmetre.
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Le pouvoir thermoélectrique € 45 du thermocouple est défini comme la dé-
rivée de la différence de potentiel électrostatique en fonction de la tempé-
rature,

SAB = om)

Exprimer €45 en termes des coefficients Seebeck €4 et .

Solution

1)

Par définition, la densité de courant d’électrons est nulle dans un voltmetre,
i.e. j, = 0. Par conséquent, la seconde relation phénoménologique (11.92)
appliquée aux métaux A et B s’exprime comme,

Via=—-¢eaVTa

Vip=-qepVIip
L’intégration des relations phénoménologiques le long des fils de métaux A
et B s’écrit,

T

ﬂl—ﬂlZ/dr'VﬂBZ—quB/d""VTB=—qe€B dr’
T

T
g — ﬂl:/dr'VﬂA:—qez—:A/dr~VTA:—qesA/ dr’
T

T
iy nz=/dr-VﬂB=—qeaB/dr-VTB=—qeaB/ a7’

T>

Le potentiel chimique p. des électrons ne dépend que de la température,
qui est la méme aux bornes « g » et « d » du voltmetre. Par conséquent, le
potentiel chimique des électrons est le méme aux bornes,

Mt = Hr

En utilisant la définition du potentiel électrochimique aux bornes du volt-
metre,

H = i+ getpr
oy = r + gePr

la différence de potentiel électrochimique aux bornes du voltmetre s’exprime
comme,

1 _
Ap =9, — o1 = — (fir — fi1)

de

En substituant les trois expressions des différences de potentiel électrochi-
mique dans ’expressions précédente, on obtient,

AQDZ —EB(Tl - T)— €B (T— Tz)— EA(TQ— Tl)
= (e —€a)(Ta — Th)
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3) En dérivant I'expression précédente par rapport & la température variable
T5, on obtient ’expression du pouvoir thermoélectrique,

Ay

AP o,

=EB— €A
b

11.8 Méthode de Harman

Une barre est contactée a chaque extrémité & des électrodes par des fils élec-
triques qui sont suffisamment épais pour qu’un courant électrique les traversent
mais suffissamment minces pour que le transfert de chaleur y soit négligeable.
Les résistances de contact et la chaleur dissipée par la barre sont négligeables.
Dans ces conditions expérimentales, on peut effectuer une mesure adiabatique
de la résistivité du matériau de la barre. Comme Harman le suggérait dans
son célebre article, “ on peut trouver des conditions expérimentales telles que
les effets Joule et Thomson soient négligeables. Utiliser les relations phénomé-
nologiques linéaires (11.92) pour montrer que la résistivité adiabatique ainsi

mesurée s’écrit,
2
Pad = P (]. + — T>
Kp

ol p = 1/c est la résistivité isotherme, k est la conductivité thermique et ¢ est
le coefficient Seebeck du matériau de la barre.

Solution

Dans l'expérience considérée, la densité de courant électrique conductif est
Jg = qeJ. et il 0’y a pas d’effet chimique, i.e. Vu, = 0, ce qui implique
que V fi, = q. V ¢ d’apres la relation (11.93) vu que la charge électrique g, est
une constante. Ainsi, les équations (11.95) de transport d’écrivent,

Jgo=-—0eVIT—0oVyp
Jo=—-rkVT+Tej,
Une résistivité adiabatique est mesurée en absence de densité de courant de

chaleur, ie. jo = 0 (sect. 11.4.9). Ainsi, la deuxieéme équation de transport
implique que la température est donnée par,

vT=T1j,
K

Par conséquent, d’apres la premiere équation de transport, la densité de courant
électrique conductif s’écrit,

&2
Jg=—0Vp-— U;qu

W, C. Harman, Special Techniques for Measurement of Thermoelectric Properties, J. App.

Phys. 29, 1373 (1958).
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La conductivité isotherme o est l'inverse de la résistivité isotherme o, i.e.
o = 1/p. Par conséquent, compte tenu de la définition (11.81) de la résisti-
vité adiabatique p,q, le gradient de potentiel électrique est donné par,

2

€ . .
Vgoz—p(l—i—T) Jg=—Paddy

PR

ce qui implique que la résistivité adiabatique p,q s’écrit en termes de la résis-

tivité isotherme comme, ,
Pad = P (1 + i T>

PR
Harman suggere de déterminer la résistivité p dans le méme échantillon en
utilisant un courant alternatif de fréquence suffisamment élevée pour qu’au-
cun gradient de température n’ait le temps de se former durant chaque demi-
période du courant. Alors le rapport ({—:2 /p n) T peut étre déduit des mesures
des résistivités p et p.q. Ce rapport est appelé le coefficient ZT" du matériau,
c’est le facteur de mérite qui caractérise la production d’énergie thermoélec-
trique des matériaux. Comme alternative & une haute fréquence, une méthode
transitoire a été suggérée, “ et des corrections pour des conditions de mesure
non-adiabatiques dans un état stationnaire ont aussi été analysées. ¢

11.9 Générateur Peltier

Un générateur Peletier est constitué de deux éléments thermoélectriques reliés
en série (fig. 11.2). Le c6té gauche du générateur est maintenu & une tempéra-
ture T et le coté droit & une température T~ . Le courant électrique I généré
par le générateur Peltier circule & travers les matériaux thermoélectriques dé-
notés 1 et 2. La plaque chauffée & température T relie électriquement les deux
matériaux, mais elle n’est pas électriquement accessible a I'utilisateur. Son po-
tentiel électrique est V. Les autres extrémités des matériaux thermoélectriques
sont du coté froid, a température T~. Ils sont reliés aux bornes électrique du
dispositif. Une résistance de charge Ry est reliée a ces bornes. La tension V est
la différence de potentiel électrique entre les bornes.

On analyse le fonctionnement de ce générateur a I'aide des équations de trans-
port de la charge électrique et de le chaleur,

jq1:—0'161VT1—01Vg01 et jQIZ—Ii1VT1+T1€1jq1
Jgw=—0262VTh—2Vgy et jo,=—kVIh+Therj,

@ E. E. Castillo, C. L. Hapenciuc, and Th. Borca-Tasciuc, Thermoelectric characterization

by transient Harman method under non-ideal contact and boundary conditions, Rev. Sci.
Instruments 81, 033902 (2010).

I.-J. Roh, Y. G. Lee, M.-S. Kang, J.-U. Lee, S.-H. Baek, S. K. Kim, B.-K. Ju, D.-B. Hyun,
J.-S. Kim, B. Kwon, Harman Measurements for Thermoelectric Materials and Modules
under Non-Adiabatic Conditions, Scientific Reports, 6, 39131 (2016).

(3)
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V+
T T
I
1 2
I
-
V=0 ) .
T J\/\/\/— T —ov
Ry
— -

Fig. 11.2 Un générateur Peltier a une charge représentée par la résistance Ry reliée aux
bornes. V est la tension entre les bornes. Le pont électrique & V1 n’est pas accessible &
I'utilisateur. Les régions notées 1 et 2 représentent les deux matériaux thermoélectriques. Les
régions notées T'T et T~ sont les c6tés chaud et froid du dispositif.

Les matériaux thermoélectriques 1 et 2 ont une longueur d et une section d’aire
A, ce qui peut s’écrire comme,

d
d:/ dr -7 A:/ds-ﬁ
0 s

ol 7 est un vecteur unitaire orienté dans le sens des aiguilles d’'une montre
le long de la densité de courant électrique j,, et les vecteurs infinitésimaux
de longueur et de surface dr et dS sont orienté dans la méme direction. La
différence de température entre le c6té chaud et le coté froid s’écrit,

d d
AT:Wlﬂ“:/drVﬂ:/erVB)
0 0

De maniere similaire, les différences de potentiel électrique A @1 et A ¢o entre
les cotés chaud et froid s’écrivent,

d
A@1:V+:/ dr -V ¢,
0

d
Apy =Vt — V:/ dr - (= V ¢2)
0

La conservation de la charge électrique implique que les densités de courant
électrique sont les mémes pour chaque matériau, ie. j, = j,,. Le courant
électrique I traversant les matériaux 1 et 2 sont donnés par lintégrale des
densités de courant électrique j, et j,, sur la surface A de la section,

I:/jq1~dS:/ij~dS
S S
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D’apres la relation (10.104), les puissances thermiques Pg, et Pg, sont les inté-
grales des densités de courant de chaleur jq, et jg,, traversant les matériaux
1 et 2, sur la surface A de la section,

Ple/(—le)'dS PQzZ/jQz'dS
S S

Déterminer :

1) la puissance thermique P, appliquée sur le c6té chaud du dispositif lors-
qu’aucun courant électrique le traverse.

2) la résistance électrique R des deux matériaux thermoélectriques lorsque les
températures sont égales, i.e. Tt = T~, et qu'aucun courant électrique
traverse la résistance Ry, i.e. lorsque Ry = oo. Dans ce cas, un courant
électrique traverse les matériaux thermoélectriques sans traverser la résis-
tance.

3) le courant électrique I en termes de la différence de température AT.

4) le rendement thermodynamique du générateur défini comme,

Ry I?
Pq

ol ici, Py est la puissance thermique du c6té chaud lorsque le courant élec-
trique traverse le dispositif. Montrer que la résistance de charge optimale

s’écrit,
Roy=R+\1+4¢C
N . . . . o)
ou ( est un parametre sans dimension donné par,

T+ (81 — 52)2

- (k1 + K2) (1—1—1)

01 02

Solution

1) Afin de déterminer la puissance thermique Pc/g lorsqu’aucun courant élec-
trique ne circule dans le circuit, i.e. j, = j,, = 0, on integre les équations
de transport sur le volume V. Les intégrales sur le volume sont le produit
des intégrales sur la section d’aire A et des intégrales sur la longueur d des
matériaux thermoélectriques,

d
/( ]Ql -dS dr r—m/ dr - VTl/dS
s
/]Q2 dS/ dr - 7“—/’62/ dr - (= VT3) /dS

H. J. Goldsmid, Introduction to Thermoelectricity, Springer (2010).

i>

ﬁ)

(4)
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ce qui se réduit a,
A A
/ _ / _
PQI_HIEAT PQQ_KQEAT
Ainsi, la puissance thermique totale est donnée par,

Pl = P, + Ph, = (s + k2) 5 AT
Si les températures des sources chaude et froide sont égales, i.e. T =
T—, les gradients de température s’annulent, i.e. VI; = V Ty = 0, ce
qui implique qu’il n’y a pas d’effet thermoélectrique. Les intégrales des
équations de transport de la charge électrique sur le volume sont le produit
des intégrales sur la section d’aire A et des intégrales sur la longueur d des
matériaux thermoélectriques,

d d
/(—qu).ds/ dr.f:al/ dr~ch1/dS-'F
S 0 0 S
d d
/(qu2)~dS/ dr~ﬁ:—02/ dr~(7V<p2)/dS~ﬁ
S 0 0 S

Etant donné que la résistance de charge est infinie, i.e. Ry = oo, le courant
électrique utilisé pour la mesure de la résistance du dispositif circule dans
la direction opposée, I — — I compte tenu de la condition V* < V. Dans
ce cas, les équations de transport de la charge électrique intégrées sur le
volume se réduisent a,

A A
IZO’1EA§01:O'1EV+
A A
I:—UQ*AQQQZ—JQ*(V+— V)

d d

La différence de potentiel électrique entre les extrémités des matériaux ther-
moélectriques 1 et 2 branchés en série est donnée par,

d (1 1

=Ap1—Ape=I—|—+—|=1——
v 1 w2 A<01+02) Ao

ou o est la conductivité effective des deux matériaux thermoélectriques.
Etant donné que la résistivité électrique p est l'inverse de la conductivité

électrique effective p,
1 1 ( 1 1 )
p = — = — —_— + —_—
o 2 \ o1 o)

Ainsi, la différence de potentiel électrique entre les extrémités des matériaux
thermoélectriques s’écrit,

2
VszdI:RI
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ou 2d est la longueur effective deux deux matériaux de longueur d chacun,
de section d’aire A, branchés en série, et R est leur résistance effective.

Ainsi,
R 2d 1 (1 n 1\ 2d
=P A o 2 g1 g9 A
Les intégrales des équations de transport de la charge électrique sur le

volume sont le produit des intégrales sur la section d’aire A et des intégrales
sur la longueur d des matériaux thermoélectriques,

d d
/qu-dS dr-f:—alel/ dr-VTl/dS-f'
s 0 0 S
d
—01/ dr-Vg@l/dS-f
0
d
/jqz-dS/ dr - 7“—0'252/ dr - VTQ)/dS
s 0
+0’2/ dr - V(pg /dS T

Les équations de transport de la charge électrique intégrées sur le volume
se réduisent a,
A

Zyt
d

I—O’Q&QAAT—FO'Q? (V+— V)

A
I:—UlglgAT— 01

La loi d’Ohm pour la résistance de charge s’écrit,
V=Ryl

Compte tenu de cette relation qui caractérise les propriétés électriques de
la résistance de charge, les équations de transport de la charge électrique
peuvent étre mise sous la forme suivante,

1
V+:—(ZI— O'1€1AT)

01

1 d
V+ 0_2(<A+02R0>1_0252AT)

ce qui implique que le courant électrique est donné par,

€2 — &1 AT_52—€1

1 1\ d R+ R
(+)+R0 + fio
g1 g9 A

I= AT

Ce résultat pour le courant I est cohérent avec ’expression du courant
obtenue an analysant la boucle de Seebeck (sect. 11.6.1), qui est équivalent
a un générateur Peltier (fig. 11.2) pour lequel la résistance de charge est
mise a zéro, i.e. Ry = 0.
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4) Afin de déterminer la puissance thermique Py qui entre & travers la plaque
chaude & température T+, on intégre les équations de transport de la cha-
leur sur le volume V. Les intégrales sur le volume sont le produit des
intégrales sur la section d’aire A et des intégrales sur la longueur d des
matériaux thermoélectriques,

d d
/(ijl)'dS/ dr-f:m/ dr~VT1/dS~fr“
S 0 0 S
d
7T+51/jq1~d5/ dr - 7
S 0
d d
/jQz.ds/ dr-f:@/ dr-(—VTQ)/dS~f
S 0 0 S

d
+T+52/jq2-d5’/ dr -7
S 0

:ngAT7T+51]

qui se réduit a,

Pq

1

Fq

2

A
:/QQEAT—&-TJ'_EQI
et implique que,
A
PQ :PQ1 —|—PQ2 = (/61 —I—K,Q)EAT—I—T—F (62— 61)[

Par conséquent, le rendement 7 pour une résistance de charge Ry est donné
par,

(52 — 61)2 AT2
0 ——————

- RyI? (R + Ry)*
N Pg - A 5 AT
— AT+ T+ -
(Iﬁ:l + I<62) d + (52 51) R+RO
qui peut étre mis sous la forme,
Ro
AT R

n= -+
T+ 11 Ro\> R
W<+>(1+0> +(1+0>
T+ (g9 — g1)" \O1 02 R R

A Taide de la définition du coefficient ¢ > 0, de la différence de température
AT =T+ — T~ > 0 et du rapport 7 = 1 + Rg/R > 0, le rendement se

réduit a,
_ (4 T r—1
= Tt ) (1r2 47

Afin de trouver la résistance de charge optimale, on doit optimiser le ren-
dement 7 par rapport au rapport 7,
d77_<1 T‘) (_1r2+r—(r—1)((_1r2+7‘)

= _ — = 0
dr T+ (¢1 Tz_Hﬁ)?
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ce qui implique que,
r?—2r—(=0

Ainsi, le rapport optimal r > 0, est donné par,

rzl—i-m

Par conséquent, pour une résistance de charge optimale, le rendement est
donné par,

- (1-%) SYERS I
) 1+ vIFO) +¢(1+vITg) ~  TF

Dans la limite { — oo, le rendement du générateur Peltier n tend vers le
rendement de Carnot ne (7.46),

I 1 T
1m = _—— =
{—o0 " T+ e

11.10 Coefficient ZT d’un matériau thermoélectrique

Les propriétés de transport d’un matériau thermoélectrique de section d’aire A
et de longueur L sont définies par les équations de transport,

Jg=—0EVT—-0Vyp e jo=—-rVT+Tej,

en conformité avec les relations (11.92), ot V . = 0, et (11.95). Le rendement
7 du matériau thermoélectrique est défini comme,

UZ—FQ

ou Py est la puissance thermique et P, est la puissance électrique définie
comme,

P~ [ Gy -Vav
1%
Ecrire le rendement 7 en fonction du rapport, ©
1L 1
r=———
k AAT
ou I est le courant électrique traversant le matériau thermoélectrique. Dans

la limite ou l'effet thermoélectrique est beaucoup plus petit que la puissance
thermique, i.e. re < 1/TF, montrer que le rendement maximal 7 s’écrit,

T\ oé&?
n=[(1- —)—T"
T+ ) 4k
Le coefficient (0 g2/ n) T+ est appelé le « coefficient ZT » du matériau thermo-
électrique. Le terme entre parentheses est le rendement de Carnot.

) G. J. Snyder, T. S. Ursell, Thermoelectric Efficiency and Compatibility, Phys. Rev. Lett.

91 (4) 138301 (2003).
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11.10) Solution

Afin de déterminer la puissance thermique FPg, on integre les équations de
transport sur le volume V. L’intégrale sur le volume est le produit de l'inté-
grale sur la section d’aire A et de l'intégrale sur la longueur L du matériau
thermoélectrique,

L L L
/jQ-dS/ dr-f:n/ dr-(—VT)/ds-f+T+e/jq-ds/ dr -7
S 0 0 S S 0

ou 7 est le vecteur unitaire dans le sens des densités de courant j, et j,, et
les vecteurs longueur infinitésimale dr et surface infinitésimale d.S sont orientés
dans le méme sens. La puissance thermique Py et le courant électrique I sont
définis comme,

L
PQz/SjQ-dS I:/qu~d.5' AT = [ dr-(-VT)

0

L’aire A de la section et la longueur L peuvent étre écrites comme,

L
A:/dS-f L:/ dr -7
s 0

Ainsi, la puissance thermique Py s’écrit,
A +
Po=«x I AT+T" el

De maniere similaire, afin de déterminer la puissance électrique P, on déduit
la différence de potentiel électrique V ¢ de I’équation de transport de la charge
électrique et on integre le produit scalaire entre — V ¢ et la densité de courant
électrique j, sur le volume V' du matériau thermoélectrique,

L L
1
/jq-(—Vgo)dVZ—E/jq-dS/ dT-(—VT)-f—*/jq'dS/ Jg-dr
v s 0 g Js 0

La puissance électrique P, est définie comme,

L L
IZ:/O Jg-dr

Ainsi, la puissance électrique P, s’écrit,

et

I’ L

P,=—elAT+— =

q 5 + P}

Par conséquent, le rendement 1 du matériau thermoélectrique est donné par,
I’ L
IAT — ——
n=— Py _ c g A
P

K%AT—FTJFEI



20 Thermodynamique des processus irréversibles

et peut étre mis sous la forme,

I'L 1
6 —_— ————
_AT o AAT
=T L nAAT
TIT T
A Tl’aide du rapport sans dimension,
IL 1
"TRAAT
le rendement 7 devient,
; (-5
E— —r rle— —r
AT o o AT
=7 11 =Ty
+ ; Ti"' e+ F

A Paide de la relation AT = T+ — T~ dans la limite r e < 1/T7, le rendement

7 se réduit a,
T K
_ 4\t _ Kk
17—(1 T+>T r(s Ur)

Afin de déterminer le rapport optimal r, on doit optimiser le rendement 7 par

rapport a r,
dn T 2k
—=(1- = |TTe—- Z=r) =
dr ( T+> <€ o T) 0

ce qui implique que le rapport optimal est,
oe

T2k

Ainsi, le rendement optimal du matériau thermoélectrique est,

T\ oe?
n=[1- — ) —T7"
T+ ) 4k
qui est un quart du produit du rendement de Carnot et du « coefficient ZT »

(a g2/ /4) T*. Dans la limite ou l'effet thermoélectrique est beaucoup plus petit
que la puissance thermique, on a,

e LT <1
k AAT

D’apres la loi d’Ohm et effet Seebeck, 'ordre de grandeur de 'intensité du
courant électrique I est donnée par,

AT A
:ER :EO'ATZ

Ainsi, la condition limite peut étre mise sous la forme,

I

2

g
7 1+ «1

K
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11.11 Jonction thermoélectrique

On considere un barreau constitué de deux métaux différents A et B d’épaisseur
d en contact thermique. Les métaux sont définis par leur conductivité électrique
04 ou opg, leur conductivité thermique k4 ou kg, et leur coefficient Seebeck ¢ 4
ou ep. Ces propriétés peuvent toutes étre considérés comme indépendantes de
la température. L’extrémité du métal A est en contact avec un bain thermique
a haute température et 'extrémité du métal B est en contact avec un bain
thermique & basse température ce qui impose une différence de température AT
a travers le barreau. Une densité de courant électrique j, constante traverse
le barreau. On mesure une différence de potentiel électrostatique Ay entre les
extrémités du barreau (fig. 11.3).

I AT

I

I

|
»
>

Fig. 11.3 Un courant électrique traverse un barreau formés de deux métaux différents A
et B en contact électrique. La figure indique les variations de potentiel électrostatique et de
température a travers chaque métal. L’origine de ’axe Or est située a la jonction entre les
deux métaux.

Par conservation de la charge électrique en régime stationnaire, la densité
de courant électrique j, et la densité de courant de chaleur j sont conservés a
la jonction ent.re les mét'auXAet Biie. g, =Jg, = Jqs et.jQ =Jo. = jQB'. Le
courant, électrique I qui traverse les métaux A et B est U'intégrale des densités
de courant j,, et j, . sur la surface A de la section,

I:/qu~dS:/qu~dS
S S

ou le vecteur de surface infinitésimale dS est orienté le long de la densité de
courant électrique j . La puissance thermique Pg exercée sur les métaux A et
B est l'intégrale des densités de courant de chaleur jg,, et jo, sur la surface

A de la section,
s s

Les différences de température ATy et ATg, et les différences de potentiel
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électrostatique A w4 et A pp a travers les métaux A et B sont donnés par,

0 d
ATA:/ dr - (—VTy) et ATB:/ dr - (—VTg)
—d 0

0 d
A@A:/ dr- (= Va) et A@B:/ dr - (—Vp)
—d 0

ou le vecteur de longueur infinitésimale dr est orienté le long de la densité de
courant électrique j, et de la densité de courant de chaleur j,. La différence
de température AT et la différence de potentiel électrostatique Ay a travers
tout le barreau satisfont,

AT = AT4 + ATg et Ap =Apyg + App

Les métaux A et B ont une longueur d et une section de surface A. Ainsi,

0 d
d:/ dr-f:/ dr -7 et A:/dS-f
—d 0 S

ou 7 est le vecteur unitaire orienté dans le sens des aiguilles d’une montre le
long de la densité de courant électrique j, et de la densité de courant de chaleur
Jo

1) Exprimer les équations de transport de la charge électrique et de la cha-
leur (11.95) pour les métaux A et B & la jonction entre les métaux en termes
des forces généralisées VT4, VT, Vya, Vg et de la température Tap
evaluée a la jonction entre les métaux.

2) Si I’épaisseur d des métaux est suffisamment petite, les gradients peuvent
étre considérés comme indépendants de la position. Dans ce cas, intégrer
I’équation de transport de la charge électrique entre les extrémités des mé-
taux A et B.

3) Dans ce méme cas, intégrer I’équation de transport de la chaleur entre les
extrémités des métaux A et B.

4) En déduire les expressions de ATy et ATp en termes de I, AT et des
coeflicients phénoménologiques.

5) En déduire les expressions de Apy et App en termes de I, AT et des
coefficients phénoménologiques.

6) Déterminer Iexpression de Ay en termes de Tap, I, AT et des coefficients
phénoménologiques.

11.11) Solution

1) Les équations de transport de la charge électrique & travers les métaux A
et B a la jonction entre ces métaux s’écrivent,

qu =—04eaVTy— (TAVC,OA

qu =—0opepVIp— UBV<pB
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De maniere similaire, les équations de transport de la chaleur a travers les
métaux A et B a la jonction entre ces métaux s’écrivent,

Jo.=—KaVTa+Tapeaj,
Jo, = —kBVITp+Tapcepj,
2) Les intégrales des équations de transport de la charge électrique sur le

volume sont le produit des intégrales sur la section de surface A et des
intégrales sur la longueur d des métaux,

>

0 0
/qu'dS d’l""f'ZUAEA d’l"'(—VTA)/dS'
S —d —d S

0
+O’A/ dT’~(*V<pA)/dS'
d S

d d
/jq3~dS/ d’l”"f‘:O'B€B/ dT(—VTB)/de
S 0 0 S

d
+UB/ d’l”-(—V(pB)/dS-’f
0 S

>

En utilisant les relations intégrales pour I, AT4, ATp, Apa et Appg, I'inté-
grale de ’équation de transport de la charge électrique a travers les métaux
A et B peut étre mise sous la forme suivante,

A A
IZE(UASAATA—FGAA@A): E(O'Bé‘BATB—I—UBA(pB)

3) Les intégrales des équations de transport de la chaleur sur le volume sont
le produit des intégrales sur la section de surface A et des intégrales sur la
longueur d des métaux,

0 0
/jQA-dS/ dr.r“zm/ dr-(—VTA)/dS-ﬁ
s —d —d s
0
+TAB€A/qu-dS/ dr -7
s —d
d d
/jQB-dS/ dr-F:mB/ dr-(—VTB)/dS~F
S 0 0 s

d
—|—TAB€B/qu~dS/ dr -7
S 0

En utilisant les relations intégrales pour Py, I, AT4 et ATg, l'intégrale de
I’équation de transport de la chaleur & travers les métaux A et B peut étre
mise sous la forme suivante,

A A
PQ:HAEATA+TAB 5AI:KBEATB+TAB egl
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En utilisant la relation AT = AT — AT, dans I’équation de transport de
la chaleur, on obtient,

d d
kA ATy +Tap EAZIZKB(AT— ATA)"’TABEBZI

qui peut étre mis sous la forme suivante,

— d
ATy = S cA Tap—1+ NB

— AT
KA+ KB A KA+ KB

En utilisant la relation AT4 = AT — ATp dans ’équation précédente, on

obtient,

€A — €EB d KA
AT = ———Typ—-1+———AT
B KA+ KB ABA KA+ KB

En substituant ’expression pour AT4 dans I’équation de transport de la
charge électrique, on obtient,

calep — €a)
KA+ KB

A A
TABI—I—O'AKEA&*AT—FO’AEA@A

I:
o4 A+kp d

qui peut étre mis sous la forme suivante,

1 ea(eB— €a) TAB) d EAKB A

A = — I —

w4 (JA KA+ KB A KA+ KB
De maniere similaire, en substituant I’expression pour ATz dans I’équation
de transport de la charge électrique, on obtient,

eg(ea— eB)
KA+ KB

A A
TABI‘FUB%*AT"‘UBEA(PB

I:
o5 A+kp d

qui peut étre mis sous la forme suivante,
1 eplea— ¢ d EBK
App— (L _BlEazen) p Nd  epra g
oB KA+ KB A KA+ KB

Une expression de la différence de potentiel électrostatique Ay entre les
extrémités du barreau est obtenue en substituant les expressions pour Ap 4
et App dans I'équation Ap = Aps + App,

A¢_[(1+1>+WTAB

oA OB KA+ KB

i]— EARBJrsBHAAT
A KA+ KB

Le premier terme entre crochets représente la loi d’Ohm. Le dernier terme
de I’équation représente 'effet Seebeck et le deuxieme terme entre crochets
impose d(e§ gradients thermiques dans chaque métal méme dans le cas ou
AT =0."

(6)

L. Gravier, S. Serrano-Guisan, F. Reuse, J.-Ph. Ansermet, « Spin-dependent Peltier effect
of perpendicular currents in multilayered nanowires », Phys. Rev. B 73, 052410, 2006.
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11.12 Effets de transport transverses

Un équation de transport comme la loi d’Ohm (11.74),
Vo=-p-J,

lie deux vecteurs, qui sont la densité de courant électrique conductif j, et le
gradient de potentiel électrique V ¢ par une application linéaire, qui est la
résistivité électrique p. Mathématiquement, un vecteur est un tenseur de rang
1 et une application linéaire entre deux vecteurs est un tenseur de rang 2.

1) Montrer que la résistivité électrique p peut étre décomposée en une somme
de la partie symétrique p°® et de la partie antisymétrique p®.

2) Montrer que la partie antisymétrique p® apporte une contribution au trans-
port qui peut étre écrite comme,

Vi =—p"(axj,)

ou V% est la contribution antisymétrique au gradient de potentiel élec-
trique et 4 est un vecteur unitaire axial.

La décomposition et ’expression de la partie antisymétrique du gradient
de potentiel électrique est un résultat général qui s’applique pour toute
relation phénoménologique linéaire entre un vecteur densité de courant et
un vecteur force généralisée.

11.12) Solution

1) Les composantes du tenseur de résistivité symétrique de rang 2 s’écrivent,

s 1
Pij = 5 (Pij + pji)

Les composantes du tenseur de résistivité antisymétrique de rang 2 sont
données par,

1
P = 3 (pij — pji)

Les composantes du tenseur de résistivité de rang 2 s’écrivent,

1 1
Pii =5 (pij + pji) + 3 (pij — Pji)
ce qui implique que,
pij = Pij + pij
Ainsi, le tenseur de résistivité p est la somme du tenseur de résistivité
symétrique p® de rang 2 et du tenseur de résistivité antisymétrique p® de
rang 2,

p=p°+p°
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2) L’application linéaire p® - j, s’écrit en composantes comme,

0 Pl2  Pis ‘7:(11 Pi2 qu + 013 jq.3
—Pla 0 oo | e | = | Pl Pos e
—pis —p33 O Ja3 —Pl3dar — P33 Je

Le produit vectoriel p® (ﬁ X J q) s’écrit en composantes comme,

Py Jai p* 2 Jg3 — pT U3 Jg,
phig | X | dg | = | P*U3Jq — p* UL Jg3
p“ U3 Jg3 P UL Jg — PO U2 Jg,

L’identification des composantes de ces deux vecteurs donne,

a a a
alz—% agz% asz—%j
Le vecteur @ est un vecteur unitaire axial,
1
IS RS RS B 2 2 2
U =uy +up +uz = W ((Pgs) + (p13)” + (pi2) ) =1

ce qui implique que,

2 2 2
o =V (05)* + (1) + (08)
Ainsi, la partie antisymétrique du gradient de potentiel électrique est don-
née par,
Va(p:—pa-jq:—pa (’lejq)

ou le vecteur unitaire axial @ est écrit en composantes comme,

) 1 - PS?,
u = ; Pis
“ \—pi2

11.13 Effet Hall

On considere un conducteur isotrope en présence d’un champ d’induction ma-
gnétique B. La résistivité électrique est un tenseur de rang 2 qui est une fonction
du champ d’induction magnétique B et la loi d’Ohm’s s’écrit,

Vo=-p(B)- j,

La réversibilité de la dynamique a I’échelle microscopique implique que la trans-
posée du tenseur de résistivité électriqg)e est obtenue en inversant 1’orientation
du champ d’induction magnétique B. = Ainsi,

p"(B) = p(-B)

™ L. D. Landau, E. M. Lifshitz, L.-P. Pitaevskii, Electrodynamics of Continuous Media,

Landav and Lifshitz Course of Theoretical Physics volume 8, Pergamon Press, 3"% edition
(2000).
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Ce résultat ne peut pas étre établi dans le cadre de la thermodynamique mais
requiert I'usage de la physique statistique. En électrodynamique linéaire, si le
champ d’induction magnétique B est appliqué perpendiculairement a la densité
de courant électrique conductif j , montrer que la loi d’Ohm peut s’écrire,

V¢:7qu7 quXB
ou le premier terme est la loi d’'Ohm (11.74) en absence de champ d’induc-
tion magnétique et le deuxieme terme est V'effet Hall (11.75) dans la direction

orthogonale au champ d’induction magnétique B et a la densité de courant
électrique conductif. Utiliser le résultat établi en sect. 11.12.

11.13) Solution

Le tenseur de résistivité électrique p (B) peut s'écrire comme la somme d’une
partie symétrique p® (B) et d’une partie antisymétrique p® (B) (sect. 11.12).
Ainsi, la loi d’Ohm (11.74) est mise sous la forme suivante,
V<p: 7pS(B) .jq - pa(B) 'jq
Le tenseur de résistivité électrique p (B) est une fonction lindaire du champ
d’induction magnétique B dans le cadre de électromagnétisme linéaire. D’apres
la relation statistique basée sur la réversibilité de la dynamique a 1’échelle mi-
croscopique, le tenseur de résistivité électrique est antisymétrique en présence
d’un champ d’induction magnétique B. Ainsi, la partie symétrique du tenseur
de résistivité p* = p (0) = p est indépendante du champ d’induction magné-
tique B,
p7 (0) = p(0)
D’apres le résultat établi pour la partie antisymétrique (sect. 11.12), la loi
d’Ohm est mise sous la forme,
Veo==p-j,— p"(B)axj,
ou p®(B) est une fonction linéaire du champ d’induction magnétique B et
4 est un vecteur unitaire sans dimension qui peut étre choisi orthogonal a la
densité de courant électrique conductif j, sans perte de généralité. Le vecteur
unitaire d’anisotropie @ est du a la présence du champ d’induction magnétique
B qui brise lisotropie du conducteur est donne lieu a des termes hors diago-
naux dans le tenseur de résistivité électrique p (B). Par conséquent, le vecteur
unitaire d’anisotropie 4 est orienté le long du champ d’induction magnétique
B. Lorsque le champ d’induction magnétique B est appliqué perpendiculai-

rement a la densité de courant électrique conductif j,, le terme d’anisotropie
dans la loi d’Ohm peut étre mis sous la forme,

p*(B)axj,=-HBxj,

ou H = —p*(B) /|| B|| est un coefficient scalaire. Ainsi, la loi d’Ohm est mise
sous la forme,

Vsp:7p.7q7HJqXB

ou le premier terme est la loi d’Ohm (11.74) et le second terme est Veffet
Hall 11.75.
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11.14 Transport de chaleur et symétrie cristalline

On considere un cristal de symétrie hexagonale, c’est-a-dire qu’il est invariant
sous une rotation d’angle 7/6 autour de 1’axe vertical dans le plan horizontal.
Cela signifie que les propriétés physiques du cristal sont les mémes apres une
telle rotation. Montrer que le tenseur de conductivité thermique symétrique &
s’écrit en composantes comme,

K 0 O
K = 0 K] 0
0 0 KH

ol K est la conductivité thermique le long de 'axe de rotation vertical et |
est la conductivité thermique dans le plan de rotation horizontal.

11.14) Solution

Le tenseur symétrique de conductivité thermique & s’écrit en composantes
comme,
K11 K12 K13
K = | k12 K22 K23
K13 K23 K33

La matrice de rotation Rz qui décrit une rotation d’angle 7/6 dans le plan ho-
rizontal autour de ’axe vertical qui laisse le tenseur de conductivité thermique
invariant, et son inverse Rz', s’écrivent,

6

e -3 0
%:—\/3 1
2

0 0

V3

R 1
0

1 1
S| -v3

— O
[}
=+
s
x|
_
Il
o
— o O

Etant donné que les propriétés physiques du cristal sont invariantes par la
rotation Rz, on effectue une rotation d’angle 7/6 de la loi de Fourier (11.26),

R%'jQ:_R%'K/'VTZ—Rg'K,'R,%-R%-VT

ot Rz - Rz = 1. Comme la loi de Fourier (11.26) est invariante par cette
rotation,

Rz jo=4jo e Rz VI=VT

et
Rz-k-R_==K ou Rz-k=K-R=x
6 6 6 6
qui peut étre écrit en composantes comme,
1 —V3 0 K11 K12 K13 K11 K12 K13 1 -3 0
V3 1 0 K12 Koz Koz | = | K12 Koz Ko V3 1 0
0 1 K13 K23 K33 K13 K23 K33 0 0 1
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Les solutions de ce systéme matriciel sont,
kKig =K1z =Koz =0 et Ki1 =Ko
Avec les identifications,
K| = K33 et K1 = K11 = K22

le tenseur de conductivité thermique & se réduit a,

K1 0 0
k=0 kK, O
0 0 HH

11.15 Effet Ettingshausen planaire

Dans ce chapitre, on a examiné plusieurs exemples de densité de courant uni-
dimensionnel qui induisent le gradient d’une grandeur intensive dans une di-
rection perpendiculaire. Ces effets sont appelés du nom des physiciens qui les
ont découverts : Righi-Leduc (11.29), Hall (11.75), Nernst (11.85), Ettingshau-
sen (11.80). Le dernier se réfere & un gradient de température induit par une
densité de courant électrique orthogonale. Cet effet a été récemment mis en
évidence dans un cristal constitué de deux types de porteurs de charges élec-
triques qui présente une forte anisotropie cristalline dans le plan ou ont lieu les
transport de chaleur et de charge électrique. Aucun champ d’induction magné-
tique ortl(lggonal n’a besoin d’étre appliqué orthogonal a ce plan pour observer
cet effet.

Le matériau a deux types de porteurs de charges électriques, les électrons
(e) et les trous (h). On suppose qu’il n’y a pas de « réaction chimique » entre les
deux. Les propriétés thermoélectriques sont isotropes, c¢’est-a-dire qu’elles sont
identiques dans toutes les directions. Par conséquent, les tenseurs de Seebeck
pour les électrons et les trous s’écrivent,

_fee O _f(en O
Ee_(O se> et eh_(O sh)

Toutefois, les conductivités varient beaucoup entre deux directions orthogo-
nales. Ainsi, les tenseurs de conductivité s’écrivent,

_ [ Oe¢,aa 0 _ (Oh,aa 0
Te = ( 0 Ue,bb) ot Th = ( 0 0h,bb>

ou les indices a et b dénotent les axes a et b, qui sont des axes cristallins
orthogonaux.

® C. Zhou, S. Birner, Y. Tang, K. Heinselman, M. Grayson, Driving perpendicular Heat

Flow : (p x n)-Type Transverse Thermoelectrics for Microscale and Cryogenic Peltier
Cooling, Phys. Rev. Lett. 110, 227701 (2013).
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On considere un transport de charges électriques le long de I’axe = qui fait
un angle 6 avec I’axe a. Monter que la densité de courant électrique j, induit une
densité de courant de chaleur j, le long de I'axe y. C’est 'effet Ettingshausen
planaire. Il peut étre établi en utilisant les instructions suivantes :

1) Montrer que le tenseur de Seebeck de ce cristal s’écrit, @
—1
e=(0cton) - (0c € ton-€n)

2) Montrer que le tenseur de Seebeck pour le cristal est diagonal et s’écrit,

c— €aa O
S\ 0 e

ou la composante diagonale €., est différente de €y, en général. La matrice
est donnée ici pour un repere orienté le long des axes cristallins a et b.

3) Ecrire les composantes du tenseur de Seebeck en termes des coordonnées
spatiales (z,y),
e = Exx Exy
Eyz  Eyy

en termes des composantes diagonales €,, et €5, du tenseur de Seebeck
représenté en termes des coordonnées spatiales (a, b).

4) La densité de courant de chaleur j est liée a la densité de courant élec-
trique j, par,
qui est une version locale de 'effet Peltier (11.108). Le tenseur de Peltier
est lié au tenseur de Seebeck par,

II=Te

En particulier, pour une densité de courant de électrique j, = jg . &, ou &
est un vecteur unitaire le long de ’axe x, montrer que la composante jg
le long de l’axe y de la densité de courant de chaleur jo = jg &+ jg.y U,
ou g est le vecteur unitaire le long de l'axe y, s’écrit,

, 1 . .
JQy = 9 T (caa — €bb)sin (20) jgx
Ainsi, Ueffet Ettingshausen planaire est maximal pour un angle 6 = 7 /4.

11.15) Solution

1) Les équations de transport de la charge électrique pour les électrons et les
trous sont données par,

Jge=—"0c € VI —0.- Vo
quh:fo'h~sh~VT— O'h'VQD

© S. D. Brechet et J.-Ph. Ansermet, Heat-driven spin currents on large scales., physica

status solidi (RRL) 5, (12) 423-425 (2011).
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L’effet Seebeck est observé lorsque la densité de courant électrique s’annule,
ie. g, =7JgetIgn=0. Ainsi,

Jg=JgetIgn=—(0c-€cton-€n) VT —(od.+0) - V=0
D’apres Ueffet Seebeck (11.83),
Vep=- (Ue+0h)_l~(0'e~€e+o'h~sh)~VT: —-e-VT
Ainsi, le tenseur de Seebeck est donné par,
e=(0c+0on) " (0c-€cton-€n)
Le tenseur de Seebeck s’écrit en composantes,

Oc,aa€e T Oh,aa €h

0
e = Oe,aa + Oh,aa
0 OebbEe T Oh,bb ER
Oe,bb + Oh,bb

Par conséquent, les composantes diagonales sont données par,

Oc,aa€e T Oh,aa €h
€aa = et Epp =
O¢,aa + Oh,aa Oe,bb + Th,bb

Oc,bb€e T Oh,bb ER

La matrice de rotation Ry qui décrit la rotation d’un angle 6 dans le plan
qui amene les axes cristallins a et b sur les x et y respectivement, et son
inverse R_ g, s’écrivent,

Ry — (cos@ - s1n0) ot R, ( cos 6 81110)

sinf  cos@ — sinf cos@

oll R_y-Rg = 1. Les coordonnées du gradient de potentiel électrique V ¢
dans la base (z,y) sont liées aux coordonnées dans la base (a,b) par,

Ox _ (cos® —sinf\ (O, ¢
Oyp/) \sin@ cosf O

Les coordonnées du gradient de température V T dans la base (x,y) sont
lies aux coordonnées dans la base (a,b) par,

0, T\  [cosf —sinb\ (0, T

0y T) \sinf cosf T
Ainsi, compte tenu de l'effet Seebeck (11.83), les coordonnées du tenseur
de Seebeck dans la base (z,y) sont liées aux coordonnées dans la base (a, b)

par,

€gz €xzy) _ [cosf — sind €aa O cos)  sinf
Eyz  Eyy ~ \sin® cosf 0 e — sinf  cosf

ce qui implique que,

<5m Ezy> _ (saa cos? 0 + ey, sin? 0 (Eaa — €bb) sin b cos 9>

Eyz  Eyy (Eaa — €bp)SiNOcosh  e4q 802 O + 4y, cos? O
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4) L’effet Peltier est donné par,
jo=Te-d,

Pour une densité de courant de chaleur jo = jg,. € +J@,y ¥ et une densité
de courant électrique j, = jq,. &, cet effet s’écrit en composantes comme,

<jQ,$> 7 (Eaa c0s? 0 + eppsin? @ (£4a — €pp) sin d cos 0> (jq,x>

JQ.y (Eaa — €pp)sinfcosf eqq sin? 6 + &4y cos? 0 0

Ainsi, leffet Ettingshausen planaire s’écrit,

. 1 . .
Jaw =5 T (Faa = ) 5in (26) jya

compte tenu de 'identité trigonométrique sin (26) = 2sin § cos 6.

11.16 Structure de Turing

Un milieu biologique est constitué de deux substances 1 et 2 de densités n; et
ng. Ce milieu génere ces deux substances a ’aide de processus caractérisés par
des densités de source m (n1,n2) et ma (n1,n2). Les substances 1 et 2 peuvent
diffuser dans le milieu. Les densités de courant de matiere j; et j, satisfont la
loi de Fick (11.51),

jlz—D1Vn1 et j2:—D2Vn2

ou D1 > 0 et Dy > 0 sont les constantes de diffusion homogenes des substances
1 et 2. Le milieu a un volume fixe, ce qui signifie que son taux d’expansion
s’annule, i.e. V- v = 0. Ainsi, les équations de continuité pour les substances 1
et 2 s’écrivent,

T.L1+V'j1:7'r1(77,1,77,2) et ’fL2+V‘j2:7T2(TL1,TL2)

A Téquilibre, on suppose que le systéme est homogene et caractérisé par les
densités ng; et nge des substances 1 et 2. Dans le voisinage de 1’équilibre,
les densités de source de matiere 71 (n1,n2) et ma (n1,ng) s’écrivent au premier
ordre en termes des perturbations de densité An; = ny— ng1 et Ang = no— ng2
pa'r)

71 (n1,n2) = Q11 Ang + Q12 Ang
T (n1,n2) = Qa1 Ang + Qa2 Ang

ou les coefficients Q11, 212, Q91, Qoo s’écrivent,

a,=9m  q,-9m _Im _ 9m
e 8n1 2= 8n2 2 (’)nl 2 8712
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Pour rester dans le cadre de la phénoménologie des processus irréversibles, on
fait ici 'hypothese que les processus qui génerent les substances 1 et 2 sont les

deux réactions chimiques 1 — 2 et 2 by 1 déerites par les coefficients
steechiométriques v,1 = — 1, vgo = 1, 11 = 1, s = — 1 et les densités de
taux de réaction w, et wy. On suppose que la température T' et les potentiels
chimiques p; et po sont homogenes, i.e. VI = 0et V 3 = V ps = 0. Analyser
I’évolution des perturbations de densité Anq et Ans en utilisant les instructions
suivantes :

1)

Exprimer les coefficients 11, Q12, 221, 222 en termes de la densité totale
n = ny + no, des perturbations de densité An; et Ano, de la température
T et du scalaire W > 0, qui est une combinaison linéaire des éléments de
matrice d’Onsager Lyq, Lab, Lpq €t Lpp. Commencer en utilisant le deuxieme
principe, i.e. ms > 0, et la relation (8.68) pour un mélange de gaz parfaits.
Déterminer les équations d’évolution temporelles des perturbations de den-
sité Ani et Ans.

Montrer que sous les conditions imposées en 1) la relation,

(Bm) = e costior v (302 )

est une solution des équations d’évolution temporelle couplées ot A < 0.

11.16) Solution

1)

A Taide de la définition (10.25) pour les densités de source de matiere

m1 (n1,n2) et mg (ny,n2) et des coefficients steechiométriques vy = — 1,
Vao = 1, vp1 = 1, vy = — 1, on peut écrire que,
1 (n1,n2) = Qi1 Any + Q12 Ang = Va1 we + v wy = — (Wa — Wh)

T (1, n2) = Qa1 Ang + Qoo Ang = Vao Wq + Ve wWp = Wq — W
A Taide de la définition (8.18) pour les affinités chimiques A, et A,

Aa:*ltll/alf H2 Va2 = U1 — K2
Ay =—p1vp — pope = — (U1 — po) = —Ag

Comme il n’y a pas de dilatation du systeme, i.e. V - v = 0, les relations
phénoménologiques linéaires (11.6) se réduisent a,

Wq = Laa -Aa + Lab Ab = (Laa - Lab) Aa = (Laa - Lab) (ﬂl - MZ)
wy = Lpa Aq + Lyp Ay = (Lba — Ly) Aa = (Lba — Lip) (1 — p2)

Etant donné que la température et les potentiels chimiques sont homogenes,
ie. VI'=0et V3 = V g = 0, le deuxieme principe (10.88) se réduit a,
1 A
T = (Wa Ag + wp Ap) = Ta (Wa — wp)
_ A
T

QN
Y
jan)

w
(Laa - Lab - Lba + Lbb) -




34

Thermodynamique des processus irréversibles

ce qui implique que W > 0 vu que T' > 0 et A2 > 0. Ainsi,
Q1 Ang + Qo Ang = — (wg — wp) = — W (1 — p2)
le Anl + 922 ATLQ = Wqg — Wp = W(,ul — ,ug)
A présent, les potentiels chimiques p1 et ps doivent étre exprimés en termes

des concentrations nj/n et ny/n des substances 1 et 2 & aide de la rela-
tion (8.68) pour un mélange de gaz parfaits,

piy (Tyn1,n) = p1 (T, ny) + RT In (%)

A
=41 (T,n1) + RTIn (”01 ram
n
pa (Tyng,n) = ps (T, ne) + RT In (;2)

qui peut étre mis sous la forme,

H1 (T7 Tll,n) = iucl) (T’ nlan) + RT'In <1 +

o (Tyna,n) = u (T,n1,n) + RT In (1 +
ol les potentiels chimiques sont a ’équilibre,
W (T,ny,n) =y (T,ny) + RT In (%)
w9 (T, no,n) = pg (T, nz) + RT In <%)
A TD’équilibre, les potentiels chimiques sont égaux,

,U(l) (Ta ni, n) = Mg (Tv n27n) = MO (Tv n17n2)

Ainsi, pour de faibles perturbations de densité, i.e. An; < 1et Ang < 1,
les potentiels chimiques deviennent,

Am

M1 (Tanlvn) ::U’O (T7n17n2)+RT n
ATLQ

H2 (T7nl7n) = ,U/O (Ta nlanQ) + RT

Par conséquent,

RTW
Qll A’ﬂl +ng A’H,Q == 7W(,u,1 - ‘LLQ) = — T (Anl - ATLQ)

RTW
Qo1 Any + Qoa Ang = W (1 — p2) = — (Any — Ang)

ce qui implique que les coefficients sont donnés par,

RTW < RTW

Q1 = Qo = — <0 et Qi = Q91 =

>0
n
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A Daide des densités de courant de matiere j; et j,, les équations de conti-
nuité pour la matiere peuvent étre mises sous la forme,
. 2 . 2
ny = Dy V*ny + m (nq,n2) et Ny = Dy V*ng + w5 (n1,n2)

ot le laplacien V2 = V - V est un opérateur scalaire. En introduisant le
scalaire 2 = Q15 = Q91 = — Q11 = — Qa9 > 0 et en tenant compte des
relations pour les densités de source de matiere m (ny,n2) et m (ny,na),
les équations de continuité pour la matiere deviennent,

fll :D1V2n1— QAnl—i—QAng
No = Dy V2o 4+ QAny — QAny

Etant donné que An; = n1 — ng1 et Ang = ng — ngz ou ngy et ngz sont
des constantes,

7i1 = Am 7i2 = ATLQ V2 ny = V2 (Anl) V2 Ng = V2 (ATLQ)

Ainsi, les équations d’évolutions temporelles couplées pour les perturbations
de densité An; et Ans sont données par,

A’l;Ll = D1 V2 (Anl) — QAm + QATLQ
Aflg = D2 V2 (AHQ) + QATLl - QAng

Les équations d’évolution temporelle couplées peuvent étre mises sous la
forme d’un systeme matriciel,

A”fll N Q) + D1 V2 Q Anl
Any) — 0 —Q+ Dy V?) \Any
En substituant la solution donnée dans les équations temporelles couplées

et a l'aide des relations,

Ahl = )\A’I’Ll et V2 (Anl) = — k2 Anl
Ahg = )\A’I’LQ et V2 (Ang) = — ]{12 A?’LQ

le systeme matriciel est alors mis sous la forme,

~Q - D k*— ) Q Any\
Q —Q— Dyk®>— ) \Any)

Pour des solutions non-triviales, le déterminant de cette matrice s’annule,
(Q+ D1 k> +X) (Q+ Dak* + 1) — Q2 =0
ce qui peut étre écrit comme,

AN 4+20d+a=0
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w =

%<QQ+(D1+D2)I€2> >0
a=(Q+D1k*) (Q+ D2 k*) — Q2 >0

ce qui implique que w? — a > 0. Les solutions de cette équation quadratique
en \ sont,

AM=—w+Vw?—a

A =—w—Vw2— o

Ces solutions sont appelées les exposants de Lyapunov du systéme. Sous
I’hypothese d'un systeme fermé au sein duquel des réactions ont lieu, qui
transforment la substance 1 en substance 2 et vice versa, les exposants de
Lyapunov sont donc négatifs, i.e. \; < 0 et Ay < 0, ce qui correspond a des
solutions stables. Pour la formation d’instabilités, ou les perturbations de
densités croissent exponentiellement, au moins un des exposants de Lyapu-
nov doit étre positif, i.e. A7 > 0 ou A2 > 0. Ainsi, dans un systéme fermé,
les perturbations de densité ne peuvent pas croitre. Afin de permettre la
formation et la croissance d’instabilités, qui peuvent donner lieu & la for-
mation de structures appelées les structures de Turing, il doit Y, avoir
une source des substances 1 et 2 qui se situe dans I’environnement. '

11.17 Ultramicroélectrodes

En électrochimie, le courant électrique qu’on observe est du essentiellement a
la diffusion des ions dans 1’électrolyte parce que le champ électrique est écranté
par lélectrolyte, sauf au voisinage immédiat des électrodes. 11 a été constaté
que ces courants conductifs peuvent étre évités en utilisant de tres petites élec-
trodes appelées des ultramicroélectrodes. (00209 00 déerit le fonctionne-
ment de ces microélectrodes dans le référentiel de I’électrolyte, i.e. v = 0. Afin
de comprendre comment les densités de courant conductif varient avec la taille
de I'électrode, on considere une électrode sphérique et une densité de courant
conductif de matiere de symétrie sphérique, j, = jar © = j, 7. Montrer que
lorsque le systéme atteint un état stationnaire, la densité de courant conductif
de matiere n’est pas nul. L’analyse du comportement transitoire montrerait

(10)

R. Phillips, Physical Biology of the Cell, Taylor & Francis, 2"? edition (2012).

K. Aoki, K. Akimoto, K. Tokuda, H. Matsuda, J. Osteryoung, Linear sweep voltammetry
at very small stationary disk electrodes, J. Electroanal. Chem. 171, 219-230 (1984).

M. Fleschmann, S. Pons, The behavior of microdisk and microring electrodes, J. Elec-
troanal. Chem. 222, 107-115 (1987).

A. M. Bond, K. B. Oldham, C. G. Zoski, Steady-state voltammetry, Analytica Chimica
Acta, 216, 177-230 (1989).

(11)

(12)

(13)
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que 1’é‘5% stationnaire est atteint plus rapidement lorsque 1’électrode est plus
petite. En coordonnées sphériques (r, 8, ¢), compte tenu de la symétrie sphé-
rique de la densité de courant de matiere, i.e. /06 = 0 et 9/0¢ = 0, 'équation
de diffusion de la matiere (11.54) pour un soluté de concentration c (r,t) s’écrit,

dc(r,t) 0?%c(r,t)  20c(rt)
o P ( o 7 or

Les conditions au bord sont,

c(r>rot=0)=c" et lim c(r,t) =c"
r—00

ol ¢* est la concentration tres loin de I’électrode et rg est le rayon de électrode.
D’apres la relation (11.51), la densité scalaire de courant conductif de matiere
Jr qui caractérise cette électrode est,

Oc (r,t)

i )t =-D
Jr (10, t) or

T=To
Etablir les résultats suivants :
1) L’équation de diffusion exprimée en termes de la fonction w (r,t) = r ¢ (r, t)

a la structure d’une équation de diffusion ou la coordonnée sphérique r jour
un role analogue a une coordonnée cartésienne.

2) L’équation de diffusion,

ow (r,t) D 0w (r,t)
ot or?
admet comme solution,
r

2V Dt

et B est une grandeur a déterminer. D’abord, écrire w (r,t) = f (n) ou la
variable 7 est une fonction sans dimension de r et ¢ qui s’écrit,

w(r,t) =B / exp (—v?)dv o wv=
vo

2

r

t) = —
77(7'7) Dt

3) Dans la limite ou le rayon de I’électrode est négligeable, i.e. r = 0, la densité
scalaire de courant conductif de matiere s’écrit,

B
NG

4) Apres un comportement transitoire, la densité scalaire de courant conductif
de matiere atteint une valeur stationnaire,

Dc*

To

Jr (0,1)

jr (7"0, OO) = -

o J. Heinze, Ultramicroelectrodes in Electrochemistry, Angew. Chem. Int. Ed. Engl. 32,

1268-1288 (1993).
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11.17) Solution

1)

Afin de montrer que la fonction w (r,t) = rc(r,t) satisfait une équation
de diffusion pour la variable spatiale r, on détermine les dérivées partielles
compte tenu du fait que les variables r et ¢ sont indépendantes. A 'aide de
Péquation de diffusion pour la concentration de matiere ¢ (r,t), la dérivée
partielle par rapport au temps de w (r,t) peut étre mise sous la forme,

Oow (r,t) roc(r,t) d?c(r,t) oc (r,t)
o~ o P Tar TP

Les dérivées partielles secondes sont données par,

Pw(rt) 0 <8(Tc(r’t)))W+8(T80(T,t))

oz or \or or or or
_9%c(rt) oc (r,t)
-7 or? +2 or

Ainsi,

ow (r,t) D 0%w (r,t)

ot or?

Les dérivées partielles de la fonction w (r,t) doivent étre exprimées en
termes des dérivées partielles de la fonction f(n) ou 5 (r,t) = rz/Dt.( )
Les dérivées partielles de la fonction 7 (r,t) = r2/Dt sont,

on ot on _2r 2y

ot D2t or Dt r
Etant donné que f (n) = w (r,t), les dérivées partielles premieres de la fonc-
tion w (r,t) sont exprimées en termes de la dérivée premiere de la fonction
(1) comme,

Ow _dfon_ _r df _ _mdf
ot dn ot  Dt2dn  tdn
Ow _ df oy _ 2r df _ 2n df

E_dnar_Dtdn_ r dn

Les dérivées partielles secondes de la fonction w (r,t) sont exprimées en
termes de la dérivée seconde de la fonction f (1) comme,

827111 o (2rdf\_ 2 df 27"d2f877_277ﬁ an? d*f
Dt dn

oz~ or T Dtdnp  Dtdnp? or rZdyn 12 dn?

Ainsi, I’équation de diffusion devient,

ndf 2Dn ﬁ 4Dn? d?f

tdn 2 dp r2 dn?

(15)

K. F. Riley, M. P. Hobson, S. J. Bence, Mathematical Methods for Physics and Enginee-
ring, Cambridge University Press, 37¢ edition (2006), sect. 20.5.
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A Taide de la définition de la fonction sans dimension 7, cette équation
différentielle est mise sous la forme,

2f

A présent, on introduit une fonction g () définie comme la dérivée de f (n)
par rapport a 7,
daf

dn

df

g(n) =

Ainsi, I’équation différentielle devient,

20 4 (42 ) =0

qui peut étre mise sous la forme,
d 1 1
M —— ( + ) dn
g(n) 4 2
En intégrant de g a 1, on obtient,
9 dd' (1 n/q 1
Lo = L Grag) o
o 9 o n
ol go = ¢ (o). La solution est,
g9 () 1./ 1
n{——*)|=—=-In{— ) - -(n-
n( " ) 5™ o 1 (1= 10)
qui peut étre mise sous la forme,

1/2 1

g9(n

ln<()1/2> = =7 m)
go 1

et implique que,

o) = s (=)

1/2

ol la constante A = go 1y’ exp (o/4). En intégrant de ng & 7, on obtient,

" ! / / K 1 77/ !
f(n)=/n g(n)dnzA/n iz P\ dn
0 0

A Tl’aide du changement de variable,
1/2 d
y="___7 alors dv il

2 9 /D = 4771/2

et compte tenu de la définition h (v) = f () = w (r,t), la solution devient,

w(r,t) = B/ exp ( ) dv'

ou la constante B = 4A. Pour vy = 0, la solution est la fonction d’erreur
h (v) = erf (v) multipliée par une constante.
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La concentration de matiere ¢ (r,t) est donnée par,

c(rt) = wint) _ ? / exp (—v/?) dv/

r 0

ou v(r,t) et on choisit vy (r,t) = v (ro,t). Ainsi, la densité scalaire de
courant conductif de matiere a I’électrode de rayon ry s’écrit,

. dc(r, 1)
Jr (ro,t) = —D ————=
a/r T=To
_ BD v 9 , BD o\ OV
=7 exp(—u )du B _rTeXp(_V>E B
0 ) r=rg 0 r=rq

ol on a utilisé le fait que la borne supérieure d’intégration v (r,t) est une
fonction de r. Dans cette relation, l'intégrale s’annule car v évaluée en rg
est vy, ce qui signifie que les bornes d’intégration inférieure et supérieure
sont égales. Compte tenu du fait que,

— exp < 73) 9 (T)
r—ro 4Dt ) or \ 2/ Dt
1 rg

BN < 4Dt>

. ( ) B D 7“8
r ) =~ 353 - €&X T
Jriro ore Vo P\ aDt

Dans la limite ou le rayon de 1’électrode est négligeable, i.e. 79 = 0, la
densité scalaire de courant conductif de matiere est donnée par,

@
or

exp (— 1/2)

T=70

on obtient,

. . . B |D ré B
Jr (0,t) = Tlolﬂ) Jr (ro,t) = 7_101510 <_ w7 (1 - M)) BENOE)

L’état stationnaire est atteint dans la limite ou ¢ — oo. Dans la limite
stationnaire,

lim v (rg,t) = lim 0

To -
t—o0 t—oo /Dt

et initialement,

. . To
vo = lim v (rg,t) = lim
t—0 (ro, )

=00
t—0 24/ Dt

Ainsi, dans I’état stationnaire, I’expression générale pour la densité scalaire
de courant conductif de matiere obtenue en 3) se réduit a,

oc (r, 00)
or

_BD [~

2

exp (— 1/2) dv
r=rq "o 0

Jr (rg,00) = =D
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La fonction d’erreur erf () est définie comme,

erf (z) = % /OI exp (— 1/2) dv

et erf (00) = 1. Ainsi, la densité scalaire de courant conductif de matiere
est mise sous la forme,

_ JABD

2
2rg

V/nBD Dc*
erf (o00) = — 52 = o
0

j’l“ (TOa OO) =

2r9c*

b=/

11.18 Effusivité

Deux longs blocs constitués de matériaux homogenes différents sont a des tem-
pérature Ty et Ty lorsqu’ils ont mis en contact I'un avec 'autre. L’interface
atteint rapidement une température Ty qui s’écrit,

T BT+ BTy
0 Ey + B,

ou By = /krc1 > 0 et By = /kacy > 0 sont appelées les effusivitiés des
matériaux 1 et 2, k1 et ko sont les conductivités thermiques et ¢; et ¢y sont
les chaleurs spécifiques par unité de volume des deux matériaux. Si le matériau
1 est tres chaud, mais qu’il a une conductivité thermique k1 et une chaleur
spécifique par unité de volume c¢; faibles, et qu’au contraire le matériau 2 a
une conductivité thermique ko et une chaleur spécifique par unité de volume
co importantes, alors la température de 'interface Ty sera presque To, i.e. le
matériau 2 ne « ressent pas la chaleur » du matériau 1. Etablir ce résultat en
utilisant les instructions suivantes :

1) On considere un axe z normal & interface avec x = 0 & l'interface, z < 0
dans le matériau 1 et > 0 dans le matériau 2. Soient T3 (x,t) et To (z, 1)
les solutions de I’équation de diffusion de la chaleur (11.35) dans les maté-
riaux 1 et 2. Déterminer les conditions au bord sur T} (z,t) et Ts (z,t) &
I'interface.

2) En utilisant une démarche qui est analogue a celle présentée en sect.11.17,
montrer que les solutions générales pour les profils de température 17 (z,t)
et T (x,t) s’écrivent,

T
T (x,t) =Cy + Dyerf | —— <0
1 (z,1) 1 1€r (2\/Tﬂf> u <
T
Ty (x,t) = Cy + Dyerf | —— >0
b (z,t) 2+ Daer (2 Tﬁ) x>
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ou erf (v) est la fonction d’erreur définie comme,

erf (v) = % /OV exp (— %) ds

et Cq, Cy, D1 et Dy sont des coefficients constants.

Utiliser les conditions au bord pour déterminer ces coefficients en termes
des températures Ty, 171 et To. Montrer que la température Ty est donnée
par la relation écrite en termes des effusivités juste apres que les deux blocs
aient atteint une température commune a 'interface.

11.18) Solution

1)

A Tlinterface, une condition au bord est que les températures des deux
matériaux sont égales,

T1 (0,t) = T2 (0,¢)

L’autre condition au bord est que les densités de courant de chaleur j,, =

—r10; T1 & et g, = — ka0, To & sont aussi égales,
oTy (0,1t) 0T (0,t)
K =K
Y o 2 ox

ol & est le vecteur unitaire le long de ’axe x.

L’équation de diffusion de la chaleur dans le bloc 1 s’écrit,

(9T1 (x,t) -\ 82T1 (x, t)
ot Ox?

— Al

Les dérivées partielles de la fonction Tj (x,t) doivent étre exprimées en
e 4 . . N 2 (16)
termes des dérivées partielles de la fonction f1 (n1) ot ny (z,t) = /A t.
Les dérivées partielles de la fonction n; (x,t) = 22 /A1t sont,
Om x? m om 2z 2m

- ___1 ¢ Ao _ 2
ot 12 i ° or Mt x

Etant donné que f1 (m) = 11 (z,t), les dérivées partielles premieres de la
fonction Tj (x,t) sont exprimées en termes des dérivées premieres de la
fonction f1 (1) comme,

8T1 o @% (EQ df1 - m dfl

W n d771 ot N /\1t2 dr]l B t d’lh
Oy _ dh Om _ 2z dfy _ 2m dfy

dx  dm dx  Mtdm oz dp

(16)

K. F. Riley, M. P. Hobson, S. J. Bence, Mathematical Methods for Physics and Enginee-
ring, Cambridge University Press, 37¢ edition (2006), sect. 20.5.
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Les dérivées partielles secondes de la fonction Ty (z,t) sont exprimées en
termes des dérivées secondes de fy (1) comme,

T _ 0 (2zdf\_ 2 dh | 2xdfi O _2m df | 4ni &S
0r2  Ox \ Mt dn )  Mtdp Mt dpf Ox a2 dpyy a2 dn?

Ainsi, I’équation de la diffusion de la chaleur devient,

m dfi  2Mm @—FZU\“]% d*fi

t dp x2 dmj 2 dn?

A Taide de la définition de la fonction sans dimension 7, cette équation
différentielle est mise sous la forme,

Lf)
dn?

) Py

4
m i

A présent, on introduit une fonction g; (1) définie comme la dérivée de
f1 (m) par rapport a n,

g1 (m) = @
dm
Ainsi, I’équation différentielle devient,
d
4m % +(m+2)g1(m)=0
Ua
et peut étre mise sous la forme,
dga (m) (1 1 )
g1 (m) 42y )M

En intégrant de 7y a 71, on obtient,

g1(n1) da’ / 71 1 1
[ [ (o)
g0 91 (771) Mo 4 2771
ot go = g1 (no). La solution est,
g1 (m) 1 m 1
In () S () - S —
n(28) - Jw (2) - fo - m)

qui est mise sous la forme,

1/2
g1 (m)n 1
hl(l(l)uzl >:—4(771—7lo)

9o Tl

ce qui implique que,
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/% exp (no/4). En intégrant de ng & 7, on obtient,

e / moo1 m ,
fi () =/ gh (m) dy = Ay / —17 OXP (— 4) dn,

ou la constante A; = gg T]é

Mo mo
A T’aide du changement de variable,
1/2
v = ﬂ -7 alors dv, = din
2 2/ A1t 4,71/2

et compte tenu de la définition hq (v1) = f1 (1), cette solution devient,

Vi

hy (v1) = By / exp (—v}?) dij

0

ou la constante By = 4 Ay, ce qui peut étre exprimé comme,

hi(n)=C1+ B / exp (— u{2) dv;
0

ou la constante C7 est donnée par,

Cy=— / i exp (—14?) dij
0

La fonction d’erreur erf (v), définie comme,

erf (v) = % /OV exp (— s%) ds

est une fonction impaire, i.e. erf (—v) = —erf(v) telle que erf (0) = 0 et
erf (co) = 1. La dérivée de la fonction d’erreur erf (v) est donnée par,

derf (v 9
dy()—\/i?exp(u)

Ainsi, a 'aide de la fonction d’erreur, on obtient,
hl (1/1) = Cl + D1 erf(l/l)
ou Dy = (y/7/2) B;. Etant donné que hy (1) = T} (2, t) et v1 = x/2/ A1,

on obtient,

Tl(x,t):C’1+D1erf< ou z <0

x
)
De maniere similaire, on obtient le profil de température dans le bloc 2,

T

2/ Aot

Tg(a:,t):C'g—FDgerf( ) ou x>0
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3) A linterface, i.e. z = 0, la premiére condition au bord, T3 (0,t) = T» (0,t) =
Ty, est satisfait si,
C,=Cy =

Les blocs sont suffisamment longs pour que les températures a ’extrémité
de chaque bloc soit en tout temps égales aux températures initiales. Ainsi,

T1 :T1 (—OO,t) :T0+D16Tf(—00) :T()— D1
T2 :TQ (OO,t) :T0+D26rf(00) :T0+D2

Par conséquent, les profils de températures s’expriment comme,

Tl(m,t):T0+(TO—T1)erf< ) et <0

x
2/ A\t
Ts (x,t) =To + (To — To) erf<2\/g) et x>0

Les dérivées spatiales des profils de température sont données par,

3T1a(£,t) = (To — Th) diy (erf(u)) 'V_O % (2\;;\Tt) »

_h-h
o 7T)\1t

“or (TQ - TO) dv (erf(l/)) v=0 oz 2\/)\72t =0
L1

B \/7T)\2t

La seconde condition au bord, i.e. k1 9, T1 (0,t) = ko 0, T (0,t), est mise
sous la forme,
To—Th T> — Tj
K1 = K2
VT )\175 VT /\gt
Elle doit étre satisfaite en tout temps ¢ aprés que U'interface ait atteint une
température Ty. D’apres la relation (11.36),

K1 K9
)\1 = — et )\2 = —
C1 C2

At _ K2 K1 Ca _ [Kaca _
To - T2 X2 K2 €1 K1cC1

ce qui implique que,

Ainsi,

BT+ Ex T

T =
0 E, + By



